Если применена экстракция, то нанесение органической фазы непосредственно на подложку для измерений часто дает равномерные и тонкие слои, которые не получаются при нанесении водных растворов.
Во многих случаях, например при приготовлении эталонных препаратов или препаратов для количественной спектроскопии с целью определения изотопного состава исследуемой смеси, а также для ряда исследований по ядерной физике, требуются особо тонкие и очень однородные слои. Известно несколько методов приготовления таких слоев: электролитический, возгонка и электрораспыление. В практике наибольшее распространение нашел электролитический метод. Кроме обеспечения однородности слоя, электролитический метод имеет ряд других достоинств. В процессе электролиза возможно отделение ТПЭ от многих мешающих радиоактивных и макроэлементов, например при электролитическом выделении кюрия в среде диметилсульфоксида происходит отделение от америция после окисления последнего до шестивалентного состояния.
Описано электролитическое осаждение ТПЭ, главным образом, мериция и кюрия, на металлические подложки из платины никеля,алюминия или нержавеющей стали, из среды карбоната калия,бисульфата аммония, азотно- и солянокислых растворов, муравьиной кислоты и спиртово-ацетоновых сред.
В большинстве случаев радиометрическое определение ТПЭ заканчивают измерением общей активности препаратов после отделения от всех мешающих радиоактивных примесей.
Выделение весовых количеств ТПЭ позволило проводить интенсивное изучение светопоглощения этих элементов в водных растворах. Полнее всего исследовано светопоглощение америция и кюрия. Появились первые работы по спектрам светопоглощения берклия, калифорния и эйнштейния. Сведения о светопоглощении трансэйнштейниевых элементов, весовыми количествами которых химики-аналитики еще не располагают, в литературе отсутствую Наличие узких характерных полос поглощения в спектрах водных растворов америция в различных валентных формах, трехвалентного кюрия и трех- и четырехвалентного берклия позволяет проводить идентификацию или количественное определение этих элементов в различных валентных состояниях спектрофотометрическим методом, например при изучении окислительно-восстановительных реакций ТПЭ, идентификации новых валентных форм и изучении реакций диспропорционирования или самовосстановления. Однако из-за небольшой чувствительности и трудностей, связанных с работой с большими количествами высокоактивных веществ, эти методы не получили на практике достаточно широкого распространения. Более перспективными могут явиться спектрофотометрические методы с применением органических реагентов. Преимущество этих методов заключается прежде всего в их высокой чувствительности и избирательности. Такие методы могут найти широкое применение для быстрого определения микрограммовых количеств америция на фоне преобладающих по активности количеств кюрия без их предварительного химического разделения, когда радиометрическое определение америция невозможно. Весьма необходимы такие высокочувствительные и избирательные методы для определения малых количеств берклия (долей микрограмма) на фоне других ТПЭ, и в особенности 249Вк, радиометрическое определение которого сопряжено с большими трудностями. Разработка спектрофотометрических методов с использованием органических реагентов в настоящее время только начинается. Описана лишь одна цветная реакция ионов ТПЭ: реакция трехвалентных америция и кюрия с арсеназо III, позволяющая определять до 0,02 мкг америция или кюрия. В работе отмечаются чрезвычайно большие значения молярных коэффициентов погашения полос берклия в роданидных растворах.
Методы выделения и разделения трансплутониевых элементов
Трансплутониевые элементы получают искусственным путем при облучении плутония, америция или кюрия в реакторах или на циклотроне. В процессе выделения ТПЭ из облученных мишеней требуется отделить микроколичества ТПЭ от макроколичеств нерадиоактивных и радиоактивных элементов. Для этих целей широкое применение нашли методы осаждения, ионного обмена, экстракции и экстракционной хроматографии. Реже используют электрохимические методы и методы возгонки.
Выбор метода отделения ТПЭ от посторонних элементов обусловливается химическим составом анализируемого раствора и поставленной задачей. На первых стадиях выделения ТПЭ из материалов, содержащих большие количества макропримесей (алюминий, продукты коррозии и др.), чаще используют методы осаждения и экстракции, а для разделения ТПЭ применяют методы ионного обмена, экстракции и экстракционной хроматографии.
Для выделения и разделения ТПЭ особенно перспективно использование различий в поведении этих элементов в разных валентных состояниях: пяти- и шестивалентного америция, четырехвалентного берклия, двухвалентных менделевия и элемента 102.
Аналитические методы определения ТПЭ, в особенности радиометрические, требуют высокой очистки не только от посторонних излучателей, но и от инертных примесей. Для достижения этого используют многократное повторение операции отделения, а в некоторых случаях последовательное применение нескольких различных методов отделения. Последний прием часто оказывается очень эффективным в процессе разделения трансплутониевых элементов.
Отделение осаждением неорганическими и органическими реагентами
Соосаждение трансплутониевых элементов.
Соосаждение основано на выделении малорастворимого соединения, присутствующего в микроконцентрации, с осадком нерастворимого соединения макрокомпонента. Наличие у трансплутониевых элементов нескольких валентных форм объясняет и различное поведение последних в реакциях осаждения. Окислительно-восстановительные циклы используются при проведения осаждения трансплутониевых элементов с фторидом лантана, фосфатом висмута и др. Методы осаждения чаще всего используют для концентрирования трансплутониевых элементов и для оса основной массы элементов-примесей.
Для выделения и разделения ТПЭ используются почти все существующие хроматографические методы: метод ионного обмена на органических ионообменниках, распределительная хроматография на бумаге или пластинках, а также разделение с помощью хелатных смол и неорганических сорбентов. Наиболее полно исследованным и широко распространенным является метод разделения ТПЭ на органических ионообменниках, которому посвящено значительное количество обзоров и монографий. Ионообменный хроматографический метод сыграл важнейшую роль в открытии трансплутониевых элементов, поскольку их выделение и: химическая идентификация производились по заранее предсказанному положению на кривой вымывания.
Имеющиеся в литературе данные касаются в основном сорбции и разделения трехвалентных ТПЭ. Число работ по исследованию сорбции ТПЭ в других валентных состояниях весьма ограничено. Сюда относятся данные по поведению Am(V) в хлорнокислых растворах и элемента 102(11) в растворе α-оксиизобутирата аммония на катионите, исследования по сорбции Am (VI) из растворов бикарбоната Na и Bk(IV) из азотнокислых растворов на анионите, а также сведения по отделению Bk(IV) других ТПЭ на фосфате циркония в присутствии двуокиси свинца.
Экстракционные методы выделения и разделения трансплутониевых элементов широко распространены как в аналитической химии этих элементов, так и в технологии их производства. Подготовка образцов к радиометрическому или другому аналитическому определению ТПЭ часто включает экстракционную очистку. Используя разнообразные экстракционные системы, можно осуществить практически все стадии выделения ТПЭ из облученных образцов.
Основные преимущества экстракционных методов — быстрота и эффективность разделений. Простота применяемой аппаратуры позволяет автоматизировать экстракционные процессы и управлять ими на расстоянии, что особенно важно в технологии производства ТПЭ. Селективность экстракции обеспечивается подбором реагента и его концентрации, растворителя, введением комплексообразующих веществ в водную фазу, регулированием ее кислотности. Если факторы разделения элементов невелики, используют многоступенчатую экстракцию или прибегают к экстракционно-хроматографическому методу разделения.
Для экстракционного выделения и разделения ТПЭ используются экстрагенты различных классов (фосфорорганические соединения, амины, хелатообразующие реагенты и т. п.), а также их смеси (синергетическая экстракция).
Металлический уран получают восстановлением урановых галогенидов
(обычно тетрафторида урана) магнием в экзотермической реакции в «бомбе» - герметичном контейнере, обычно стальном, общая методика известна как «термитный процесс». Реакции в «бомбе» протекают при температурах, превышающих 1300°C. Прочный стальной корпус необходим, чтобы выдержать высокое давление внутри него. «Бомба» заряжается гранулами
и в избытке засыпается тонко диспергированным магнием и нагревается до 500-700°C, с этого момента начинается саморазогревающаяся реакция. Теплоты реакции достаточно для расплавления начинки «бомбы», состоящей из металлического урана и шлака - фторида магния, . Шлак отделяется и всплывет вверх. Когда «бомба» охлаждается, получается слиток металлического урана, который, несмотря на содержание в нем водорода, подходит для топлива АЭС.