Смекни!
smekni.com

Плотность жидкости при нормальной температуре кипения (стр. 1 из 2)

Аддитивный метод Шредера

При изучении свойств органических жидкостей Шредером было сформулировано правило, в соответствии с которым при прогнозировании мольного объема чистой жидкости при нормальной температуре кипения следует сосчитать число атомов углерода, водорода, кислорода и азота в молекуле, добавить по единице на каждую двойную связь и сумму умножить на семь. При этом получаем мольный объем жидкости в см3/моль. Правило Шредера дает удивительно хорошие результаты для нормальных жидкостей - погрешность, как правило, не превышает 3-4% тон. Плотности сильно ассоциированных жидкостей прогнозируются с меньшей точностью. В дальнейшем аддитивный метод Шредера модифицировался самим автором и другими учеными. В табл. 6.5 приведены значения групповых вкладов в последней редакции Шредера и Ле Ба.

Таблица 6.5

Аддитивные составляющие для расчета молярных объемов Vb

органических веществ

Тип атома, группы, связи Составляющая, см3/моль
Шредер Ле Ба
Углерод 7 14,8
Водород 7 3,7
Кислород (за исключением приведенных ниже случаев): 7 7,4
в метиловых сложных и простых эфирах 9,1
в этиловых сложных и простых эфирах 9,9
в высших сложных и простых эфирах 11,0
в кислотах 12,0
Тип атома, группы, связи Составляющая, см3/моль
Шредер Ле Ба
соединенный с S, P, N 8,3
Азот: 7
с двойной связью 15,6
в первичных аминах 10,5
во вторичных аминах 12,0
Бром 31,5 27
Хлор 24,5 24,6
Фтор 10,5 8,7
Иод 38,5 37
Сера 21 25,6
Кольцо:
трехчленное -7 -6,0
четырехчленное -7 -8,5
пятичленное -7 -11,5
шестичленное -7 -15,0
нафталиновое -7 -30,0
антраценовое -7 -47,5
Двойная связь между атомами углерода 7
Тройная связь между атомами углерода 14

Неаддитивный метод Тина и Каллуса

Величина мольного объема жидкости при нормальной температуре кипения представлена в качестве функции критического объема:

,(6.13)

где

и
выражены в см3/моль.

Это простое соотношение хорошо прогнозирует

для органических чистых жидкостей, погрешность не превышает 3% отн. при условии, что значения критического объема определены надежно.

Рассмотренные выше методы Шредера и Тина-Каллуса не распространяются на всю область насыщенных состояний жидкости. Они приложимы к одной точке в этой области - нормальной температуре кипения. Прогнозирование плотности насыщенной жидкости при любой температуре ниже

может быть выполнено на основе некоторых уравнений состояния вещества, так, например, уравнения Бенедикта-Уэбба-Рубина для углеводородов. Однако целесообразнее использовать для этого специальные эмпирические корреляции, которые относительно просты и в большинстве случаев более точны.

Практически все корреляционные методы основаны на принципе соответственных состояний и требуют знания плотности насыщенной жидкости хотя бы при одной температуре. Поскольку даже такой минимум информации не всегда доступен, приходится прибегать к оценкам критической плотности вещества по его критическому объему. При отсутствии экспериментальных данных вычисление плотности может быть основано на коэффициенте сжимаемости жидкости при давлении насыщения, что рационально выполнять с использованием таблиц Ли-Кеслера (разд. 4). Ниже рассмотрены оба подхода.

Метод Ганна-Ямады

Метод предназначен для прогнозирования молярного объема

и плотности неполярных или слабополярных жидкостей
только на линии насыщения. Он основан на принципе соответственных состояний. Для прогнозирования необходимо как минимум знать ацентрический фактор и критические температуру и давление. Предложенная авторами корреляция имеет вид

,(6.14)

где

- безразмерный параметр,
- масштабирующий параметр,
- ацентрический фактор.
и
являются функциями приведенной температуры. Для расчета
рекомендованы корреляции двух видов:

при

;(6.15)

при

.(6.16)

Расчет значения

производится по одному уравнению для любой температуры в диапазоне
:

.(6.17)

При расчете масштабирующего параметра рекомендованы следующие подходы.

Если известен молярный объем насыщенной жидкости

или ее плотность при приведенной температуре
то расчет
построен на основе этих сведений:

.(6.18)

Если экспериментальные данные для

отсутствуют, то расчет масштабирующего параметра выполняется по уравнению

.(6.19)

В большинстве случаев масштабирующий параметр близок по значению к критическому объему

.

При наличии экспериментальных сведений о плотности интересующей насыщенной жидкости при некоторой температуре

масштабирующий параметр
может быть исключен из расчета, и задача сводится к решению уравнения

,(6.20)

где

, а их участие в уравнении следует понимать как температурный уровень, при котором вычисляются
и
, а не как сомножители.

Метод Ганна-Ямады считается наиболее точным из имеющихся в настоящее время методов прогнозирования плотности насыщенной жидкостипри Tr < 0,99. Несмотря на то, что он рекомендован авторами для неполярных или слабо полярных веществ, результативность его зачастую оказывается достаточной и в приложении к полярным жидкостям.

Пример 6.4

Методом Ганна-Ямады рассчитать плотность жидкого изобутилбензола, находящегося на линии насыщения в диапазоне 298-650 К. Критические параметры и ацентрический фактор вещества приведены выше.

Решение

Молярный объем вещества

при избранной температуре вычисляется по уравнению (6.14).

Поскольку экспериментальные данные для

отсутствуют, то расчет масштабирующего параметра производим по уравнению (6.19):

82,05·650·(0,2920-0,0967·0,378)/31 = 439 см3/моль.

Результаты расчета плотности приведены в табл.6.6 и на рис. 6.9. Для 298 К имеем:

= 298/650 = 0,458;

= 0,29607 – 0,09045·0,458 –0,04842·0,4582 = 0,244;

= 0,33593–0,33953·0,458+1,51941·0,4582+1,11422·0,4584 = 0,354;

= 0,354·(1–0,378·0,244)·439 = 140,9 см3/моль;