При изучении свойств органических жидкостей Шредером было сформулировано правило, в соответствии с которым при прогнозировании мольного объема чистой жидкости при нормальной температуре кипения следует сосчитать число атомов углерода, водорода, кислорода и азота в молекуле, добавить по единице на каждую двойную связь и сумму умножить на семь. При этом получаем мольный объем жидкости в см3/моль. Правило Шредера дает удивительно хорошие результаты для нормальных жидкостей - погрешность, как правило, не превышает 3-4% тон. Плотности сильно ассоциированных жидкостей прогнозируются с меньшей точностью. В дальнейшем аддитивный метод Шредера модифицировался самим автором и другими учеными. В табл. 6.5 приведены значения групповых вкладов в последней редакции Шредера и Ле Ба.
Таблица 6.5
Аддитивные составляющие для расчета молярных объемов Vb
органических веществ
Тип атома, группы, связи | Составляющая, см3/моль | |
Шредер | Ле Ба | |
Углерод | 7 | 14,8 |
Водород | 7 | 3,7 |
Кислород (за исключением приведенных ниже случаев): | 7 | 7,4 |
в метиловых сложных и простых эфирах | – | 9,1 |
в этиловых сложных и простых эфирах | – | 9,9 |
в высших сложных и простых эфирах | – | 11,0 |
в кислотах | – | 12,0 |
Тип атома, группы, связи | Составляющая, см3/моль | |
Шредер | Ле Ба | |
соединенный с S, P, N | – | 8,3 |
Азот: | 7 | – |
с двойной связью | – | 15,6 |
в первичных аминах | – | 10,5 |
во вторичных аминах | – | 12,0 |
Бром | 31,5 | 27 |
Хлор | 24,5 | 24,6 |
Фтор | 10,5 | 8,7 |
Иод | 38,5 | 37 |
Сера | 21 | 25,6 |
Кольцо: | – | |
трехчленное | -7 | -6,0 |
четырехчленное | -7 | -8,5 |
пятичленное | -7 | -11,5 |
шестичленное | -7 | -15,0 |
нафталиновое | -7 | -30,0 |
антраценовое | -7 | -47,5 |
Двойная связь между атомами углерода | 7 | – |
Тройная связь между атомами углерода | 14 | – |
Величина мольного объема жидкости при нормальной температуре кипения представлена в качестве функции критического объема:
,(6.13)где
и выражены в см3/моль.Это простое соотношение хорошо прогнозирует
для органических чистых жидкостей, погрешность не превышает 3% отн. при условии, что значения критического объема определены надежно.Рассмотренные выше методы Шредера и Тина-Каллуса не распространяются на всю область насыщенных состояний жидкости. Они приложимы к одной точке в этой области - нормальной температуре кипения. Прогнозирование плотности насыщенной жидкости при любой температуре ниже
может быть выполнено на основе некоторых уравнений состояния вещества, так, например, уравнения Бенедикта-Уэбба-Рубина для углеводородов. Однако целесообразнее использовать для этого специальные эмпирические корреляции, которые относительно просты и в большинстве случаев более точны.Практически все корреляционные методы основаны на принципе соответственных состояний и требуют знания плотности насыщенной жидкости хотя бы при одной температуре. Поскольку даже такой минимум информации не всегда доступен, приходится прибегать к оценкам критической плотности вещества по его критическому объему. При отсутствии экспериментальных данных вычисление плотности может быть основано на коэффициенте сжимаемости жидкости при давлении насыщения, что рационально выполнять с использованием таблиц Ли-Кеслера (разд. 4). Ниже рассмотрены оба подхода.
Метод предназначен для прогнозирования молярного объема
и плотности неполярных или слабополярных жидкостей только на линии насыщения. Он основан на принципе соответственных состояний. Для прогнозирования необходимо как минимум знать ацентрический фактор и критические температуру и давление. Предложенная авторами корреляция имеет вид,(6.14)
где
- безразмерный параметр, - масштабирующий параметр, - ацентрический фактор. и являются функциями приведенной температуры. Для расчета рекомендованы корреляции двух видов:при
;(6.15)
при
.(6.16)Расчет значения
производится по одному уравнению для любой температуры в диапазоне :.(6.17)
При расчете масштабирующего параметра рекомендованы следующие подходы.
Если известен молярный объем насыщенной жидкости
или ее плотность при приведенной температуре то расчет построен на основе этих сведений:.(6.18)
Если экспериментальные данные для
отсутствуют, то расчет масштабирующего параметра выполняется по уравнению .(6.19)В большинстве случаев масштабирующий параметр близок по значению к критическому объему
.При наличии экспериментальных сведений о плотности интересующей насыщенной жидкости при некоторой температуре
масштабирующий параметр может быть исключен из расчета, и задача сводится к решению уравнения,(6.20)
где
, а их участие в уравнении следует понимать как температурный уровень, при котором вычисляются и , а не как сомножители.Метод Ганна-Ямады считается наиболее точным из имеющихся в настоящее время методов прогнозирования плотности насыщенной жидкостипри Tr < 0,99. Несмотря на то, что он рекомендован авторами для неполярных или слабо полярных веществ, результативность его зачастую оказывается достаточной и в приложении к полярным жидкостям.
Пример 6.4
Методом Ганна-Ямады рассчитать плотность жидкого изобутилбензола, находящегося на линии насыщения в диапазоне 298-650 К. Критические параметры и ацентрический фактор вещества приведены выше.
Решение
Молярный объем вещества
при избранной температуре вычисляется по уравнению (6.14).Поскольку экспериментальные данные для
отсутствуют, то расчет масштабирующего параметра производим по уравнению (6.19): 82,05·650·(0,2920-0,0967·0,378)/31 = 439 см3/моль.Результаты расчета плотности приведены в табл.6.6 и на рис. 6.9. Для 298 К имеем:
= 298/650 = 0,458; = 0,29607 – 0,09045·0,458 –0,04842·0,4582 = 0,244; = 0,33593–0,33953·0,458+1,51941·0,4582+1,11422·0,4584 = 0,354; = 0,354·(1–0,378·0,244)·439 = 140,9 см3/моль;