Смекни!
smekni.com

Цезий (стр. 5 из 8)

Наилучшее решение трудной задачи получения металлического цезия было найдено в 1911 г. французским химиком Акспилем. При методе Акспиля, до сих пор остающемся наиболее распространенным, хлорид цезия восстанавливают металлическим кальцием в вакууме, причем реакция

2CsCl + Ca → CaCl2 + 2Cs

идет практически до конца. Процесс ведут в специальном приборе (в лабораторных условиях – из кварца или тугоплавкого стекла), снабженном отростком. Если давление в приборе не больше 0,001 мм рт. ст., температура процесса может не превышать 675 °C. Выделяющийся цезий испаряется и отгоняется в отросток, а хлористый кальций полностью остается в реакторе, так как в этих условиях летучесть соли ничтожна (температура плавления CaCl2 равна 773 °C, т.е. на 100 °C выше температуры процесса). В результате повторной дистилляции в вакууме получается абсолютно чистый металлический цезий.

В литературе описаны еще многие другие способы получения металлического цезия из его соединений, но, как правило, они не сулят особых преимуществ. Так, при замене металлического кальция его карбидом температуру реакции приходится повышать до 800 °C, и конечный продукт загрязняется дополнительными примесями. Можно разлагать азид цезия или восстанавливать цирконием его бихромат, но эти реакции взрывоопасны. Впрочем, при замене бихромата хроматом цезия процесс восстановления протекает спокойно, и, хотя выход не превышает 50%, отгоняется очень чистый металлический цезий. Этот способ применим для получения небольших количеств металла в специальном вакуумном приборе.

Мировое производство цезия сравнительно невелико, но в последнее время оно постоянно растет. О масштабах этого роста можно только догадываться – цифры не публикуются.

Сырьевые источники

Содержание цезия в земной коре а примерно 7–10%. Цезий занимает 49-е место, содержание его в земной коре (по массе) больше, чем кадмия, мышьяка, ртути, сурьмы и ниобия. Поскольку и цезий в минералах (за исключением поллуцита) является компонентными примесями, то обнаружить их в руде можно только аналитическими методами.

Поскольку в настоящее время извлечение цезия из полевых шпатов и слюд (кроме лепидолита) практически еще не освоено, балансовыми являются только запасы цезия в поллуците.

Для цезия в настоящее время известно два минерала: поллуцит и авогадрит. Впервые поллуцит был найден в 1846 г., в миаролито-вых пустотах среди гранитов на о. Эльба (Италия), а в 1891 г. он был найден в Геброне (США) в ассоциации с кварцем и цезий-содержащим бериллом. Поллуцит обычно ассоциируется с полевым шпатом, петалитом, лепидолитом, кварцем, амблигонитом, сподуменом, турмалином, белым и розовым бериллом. Поллуцит является водным алюмосиликатом цезия.

По мере понижения содержания цезия в поллуците (в результате выветривания) в нем увеличивается содержание натрия (1,7–3,9% NaО) и воды (1,5–2,6 не более 4,0%), что объясняется объемным изоморфизмом (замещением Сs+ на Na+ с вхождением в решетку минерала Н20).

Важнейшие месторождения поллуцита найдены в Юго-Западной Африке, США, Швеции, Южной Родезии, Канаде, Китае. В виде побочного продукта при обогащении литиевых руд в Южной Родезии и Юго-Западной Африке ежегодно добывается около 100–150 т поллуцита. Мировые запасы этого минерала оцениваются в 300 тыс. т.

Авогадрит-борофторид калия (К, Сs) [ВР4], в котором калий частично изоморфно замещен цезием. Авогадрит назван в честь итальянского физика Амедо Авогадро. Состав минерала непостоянен, содержание СзВР4 в нем достигает 20%. Авогадрит найден с сасолином Ве(ОН)3 и другими солями на Везувии.

К минералам, в которых содержание рубидия и цезия достигает относительно высоких концентраций, относится также лепидолит, который служит литиевым сырьем. Рубидия в нем содержится от 3 до 4%, цезия до 0,5%. Это самый богатый по содержанию рубидия минерал. Лепидолит встречается исключительно в пегматитах. Важнейшие зарубежные месторождения лепидолита промышленного значения находятся в Юго-Западной Африке, Южной Родезии, США и Канаде.

Основное значение для получения соединений цезия имеет в настоящее время поллуцит, однако цезий извлекают попутно из карналлита. Карналлит – двойной хлорид калия и магния КС1-МgС12-6Н20 – является минеральным образованием и представляет собой типичный продукт последних стадий усыхания морских бассейнов. Рубидий и цезий присутствуют в карналлите как изоморфные заменители калия в кристаллической решетке минерала. Среднее содержание рубидия, в карналлите составляет 0,015–0,04% в пересчете на хлориды, а цезия в десятки раз меньше, чем рубидия.

Всемирно известны месторождения карналлита Соликамское и Стасфуртское. Запасы карналлитов огромны.

В таких же количествах, как в карналлитах, цезий и рубидий содержатся в кионите (КС1 Мб504-ЗН20), который также имеется в соляных месторождениях. Гигантские запасы карналлита являются перспективными источниками извлечения рубидия и

цезия. Во многих горных породах соотношение К: КЬ остается постоянным, равным 90,

Цезий поглощаются такими растениями, как чай, кофе и особенно табак. В золе табачных листьев содержание цезия, по исследованиям японских авторов, достигает 0,4–10-2% КЬ и 0,17–10-4% Сs.

Обычно основное количество поллуцита отделяют от пегматитовой породы вручную. Исходную руду измельчают до крупности не менее 0,15 мм, обрабатывают серной кислотой до рН = 1,4–2,7, затем добавляют соляную кислоту, небольшое количество сульфата алюминия и катионного реагента – аминоацетата коксового масла. Флотацию проводят с тремя перечистками, при этом из руды, содержащей 8% Сs, получают концентрат, содержащий более 20% Сs. Извлечение цезия составляет 87%.

Все способы разложения поллуцита можно объединить в три группы: кислотные, способы спекания и способы прямого получения цезия. Выбор способа определяется составом и качеством конечного продукта, а также экономическими соображениями.

Кислотные способы. Для разложения поллуцита используются кислоты: соляная, плавиковая, серная и бромистоводородная. Сущность солянокислого способа заключается в обработке поллуцита при нагревании соляной кислотой с последующим обезвоживанием для удаления Si02 и осаждения цезия в виде комплексной соли Сs3. Очистка хлорида цезия через эту соль сразу позволяет получать препараты чистотой 99,9%.

Разложение комплексной соли осуществляется следующими способами: 1) гидролизом при нагревании соли с избыточным количеством воды; 2) нейтрализацией раствором аммиака; 3) нагревом в вакууме.

Реакция взаимодействия поллуцита с концентрированной соляной кислотой протекает при нагревании по реакции:

Сs20-А1203.4SiO2.nН20 + 8НС1 = 2СsС1 + 2А1С13 + 4Si02 + (n+4) Н20.

Лучшим режимом разложения поллуцита соляной кислотой (температура 100° С, НС1 8,8 н., время 6 ч) можно обеспечить переход в раствор до 95–98% Cs, содержащегося в поллуците.

Наиболее прогрессивен способ разложения двойного хлорида цезия и сурьмы в вакууме при 450° С. Так как SbС18 кипит при 220° С, а СsС1 лишь плавится при 646° С, то SbС13 в условиях процесса легко отгоняется, а хлорид цезия остается в твердой фазе.

Так как по всем указанным вариантам некоторое количество хлорида сурьмы остается в хлориде цезия, то его удаляют с помощью сероводорода после растворения в малом объеме воды. К раствору после отделения сурьмы сероводородом добавляют НС104 (избыток до 100%) для осаждения СsClO4. Последний после отделения медленно и осторожно нагревают до плавления, получая СsС1 с содержанием суммы примесей ~0,001%.

Для разложения поллуцитового концентрата плавиковой кислотой его измельчают до размера частиц 0,20–0,25 мм, помещают в чугунные реакторы, смешивают с водой и обрабатывают технической (50–60%) плавиковой кислотой, взятой с большим избытком (из расчета 2–2,2 кг кислоты на 1 кг поллуцитового концентрата), при нагревании до температуры кипения и выдерживают при этой температуре в течение 1 ч для удаления кремния в виде SiР4.

Для получения чистых солей цезия из квасцов их растворяют в кипящей воде, и в раствор добавляют гидрат окиси бария. Алюминий при этом выделяется в осадок в виде А1 (ОН)3, а сульфат-ионы образуются в виде ВаS04.