Смекни!
smekni.com

Обеззараживание воды 2 (стр. 6 из 6)

1 – проточный трубчатый электролизер2 – блок питания3 – емкость приготовления концентрированного раствора соли4 – мешалка5 – шаровой вентиль6 – регулировочные клапаны7 – насос дозатор соляного раствора8 – сепаратор9 – емкость раствора гипохлорита натрия10 – реле протока жидкости11 – манометр12 – вентилятор13 – реле протока воздуха Исследования показали, что электролиз слабоконцентрированных растворов хлорида натрия (1,5 15 г/л) энергетически выгоден при коэффициенте перевода хлорида натрия в гипохлорит, близком к 10%. При значениях коэффициента перевода больше указанного проявляется нелинейная зависимость значения коэффициента перевода хлорида натрия в гипохлорит от величины энергозатрат на электролиз, т.е. процесс становится энергетически невыгодным. В то же время такой низкий коэффициент перевода может быть задан только при дешевом сырье для получения раствора хлорида натрия, которым является подземная минерализованная вода, добываемая на месте потребления ГХН. При уменьшении величины коэффициента перевода ниже указанной соответственно снижается экономичность процесса электролиза из-за излишнего расхода минерализованной воды.
Самотечная подача минерализованной воды на электролизер и проточный режим направлены на установление стационарного режима электролиза, что особенно важно для поддержания коэффициента перевода, близким к 10%, т.е. для энергетически выгодного электролитического производства ГХН из минерализованной воды с предлагаемым содержанием хлорида натрия. Использование подземной минерализованной воды, добываемой на месте производства ГХН, уменьшает по сравнению с известными способами расходы на перевозку и приготовление растворов хлорида натрия.Подземная вода одного месторождения имеет постоянные физико-химические характеристики: химический состав (в том числе концентрация хлорида натрия), температуру, давление и пр. Это позволяет упростить систему контроля за параметрами электролиза и систему подачи раствора, обеспечив электролиз в проточном самотечном режиме. Соответственно на выходе электролизера будет раствор ГХН заданной концентрации, пригодный для употребления без дополнительного контроля. При этом отпадает необходимость в специальном контрольном оборудовании, упрощается обслуживание станций водоподготовки.Экологическая чистота подземной воды позволяет использовать ее для получения гипохлорита натрия, пригодного для обработки питьевой воды без дополнительной очистки. Однако подземные минерализованные воды в качестве исходного электролита могут использоваться только в тех случаях, когда вблизи очистных сооружений имеется пробуренные скважины многоцелевого назначения. Поэтому на большинстве объектов, где невозможно использовать природные рассолы, нашли распространение установки, работающие на растворах поваренной соли. Технологические схемы таких электролизных установок могут быть как прямоточными, так и с системой рециркуляции. Расход поваренной соли у прямоточных установок, как правило, несколько больше, чем у рециркуляционных. Однако их конструктивное оформление и условия эксплуатации значительно проще, поэтому их используют в основном на объектах небольшой пропускной способности. В последнее время прямоточные схемы находят распространение и на очистных сооружениях со значительной суточной потребностью в активном хлоре. В этих схемах используются электролизеры с окисно-металлическими анодами, способными эффективно работать даже при концентрации раствора поваренной соли 12 – 25 г/л. Известно, что при прохождении электрического тока через раствор хлорида натрия происходит образование гипохлорита натрия и выделение водорода, который в виде пузырьков поднимается вверх, увлекая за собой раствор хлорида натрия. Подъемная сила этих пузырьков увеличивает скорость течения раствора хлорида натрия в межэлектродных зазорах, тем самым затягивая его из околодонного потока в межэлектродные зазоры между пластинчатыми электродами, которые значительно меньше расстояний между электродными кассетами. При этом в потоке над пластинчатыми электродами будет собираться продукт электролиза - гипохлорит натрия. Чем меньше величина межэлектродных зазоров, тем более энергетически эффективен процесс электролиза хлорида натрия. Однако минимальная величина межэлектродных зазоров ограничена условием обеспечения протекания через них раствора хлорида натрия, а также технологическими возможностями выполнения плоских поверхностей пластинчатых электродов. Экспериментально было обнаружено, что в интервале величин межэлектродных зазоров от 1 до 3 мм обеспечивается протекание раствора хлорида натрия между пластинчатыми электродами с минимально возможным гидравлическим сопротивлением и, кроме того, указанный межэлектродный зазор может быть достигнут без опасности соприкосновения поверхностей электродов из-за технологических дефектов. Наличие значительно более широких чем межэлектродные зазоры каналов между электродными кассетами, объединяющими пластинчатые электроды, а также канала вдоль дна емкости, обеспечивающего равномерную подачу раствора хлорида натрия ко всем электродным кассетам с пластинчатыми электродами, позволяет пропускать через электролизер в ламинарном режиме с наименьшим гидравлическим сопротивлением весь расход раствора хлорида натрия, требуемый для получения заданного количества ГХН. Простота и надежность работы электролизных установок, а также заинтересованность потребителей в применении безопасного электрохимического метода обеззараживания воды привели к созданию огромного числа самых разнообразных по конструкции электролизеров. Они отличаются видом включения электродов (биполярные и монополярные), выполнением и размещением электродов (коаксильное и плоскопараллельное) и по другим конструктивным признакам. При создании электролизных установок большой единичной мощности предпочтение отдается плоскопараллельному размещению электродов. В таких электролизерах электролит проходит по синусоидальному пути через ряд биполярных ячеек. Электроды могут быть расположены вертикально или под небольшим углом к вертикали. Применяются также конструкции с горизонтальными электродами [14]. Лучшим зарубежным образцом установок является «Sanilec», разработанная фирмой «DiamondShamrockCorporation». Установка может работать как при использовании поваренной соли, так и морской воды [15]. Установка «Sanilec», работающая на поваренной соли (рис.6) состоит из электролизера, выпрямителя, системы автоматической подачи рассола, емкостей для хранения рассола и гипохлорита натрия, умягчителя воды и элементов автоматического контроля за показателями работы. Электролизер выполнен в виде корпуса прямоугольного сечения с расположенным в нем электродным пакетом. Аноды – малоизнашивающиеся стабильные электроды с активным покрытием из окислов драгоценного металла, катоды – титановые. Все аппараты изготовлены из таких коррозионно-устойчивых материалов, как титан, нержавеющая сталь, фторопласт и т.п.

Рис.6 Общий вид установки «Sanilec» Установка работает следующим образом. В растворном баке приготовляется концентрированный раствор поваренной соли, который насосом подается в смеситель, где разбавляется водой до 3%-ного содержания NaCl, а затем – в электролизер. Полученный гипохлорит натрия поступает в газоотделитель, собирается в емкости-хранилище и оттуда дозируется в обрабатываемую воду. Концентрация активного хлора в готовом продукте в среднем составляет 8 г/л. При необходимости она может быть несколько увеличена. На получение 1 кг активного хлора расходуется 3,5 кг соли, 5,5 кВт*ч электроэнергии и 125 л воды. Фирмой разработано несколько модификаций установок производительностью от 9 до 90 кг активного хлора в сутки. Установки «Sanilec» могут работать и при использовании морской воды, прошедшей предварительную фильтрацию. Концентрация активного хлора в готовом продукте в зависимости от исходного содержания воды и режимных параметров составляет 0,2 – 2,35 г/л. Катодные отложения солей жесткости удаляются периодически путем кислотной промывки. По данным фирмы, частота промывки – 1 раз в шесть месяцев. Время, необходимое на проведение всей операции, с учетом установки электролизера и пуска его в эксплуатацию, составляет 4 – 6 часов. Установки выполняются с производительностью от 60 до 1000 кг активного хлора в сутки. Электролизеры «Pepcon» также могут работать при использовании как растворов соли, так и морской воды. Конструкция типовой электролитической ячейки показана на рис. 7. Анодный графитовый стержень с активным покрытием из PbO2 на специальных фиксаторах установлен внутри металлической трубы, являющейся катодом. При использовании морской воды катод выполняется из титана, а растворов поваренной соли – из нержавеющей стали. Токоподводы расположены снаружи трубы. Рассол протекает в узкий зазор между электродами.
Рис.7 Ячейка «Pepcon»
Отдельные ячейки можно компоновать в параллельные блоки с образованием модулей. Набор модулей позволяет получить требуемую производительность. Каждая ячейка рассчитана на токовую нагрузку до 500 А при напряжении 6 – 7 В и способна в сутки производить до 9 кг активного хлора – при использовании раствора поваренной соли и до 11 кг – при использовании морской воды. Регулируя токовую нагрузку и напряжение, можно получить растворы с содержанием активного хлора от 0,2 до 8 г/л. Получение концентрированных растворов ГХН возможно только при применении системы рециркуляции и теплообменных устройств. Для получения 1 кг активного хлора затрачивается 3 – 3,5 кг соли и 6,6 – 6,8 кВт*ч электроэнергии. В настоящее время в нашей стране в основном нашли применение электролизеры для получения ГХН из растворов поваренной соли. Серийно выпускаются электролизные установки непроточного типа с графитовыми электродами марки ЭН производительностью от 1 до 100 кг активного хлора в сутки. Схема электролизной установки показана на рис. 8.
Рис.8 Электролизная установка непроточного типа, ЭН
Растворный бак 1 из нержавеющей стали установлен с насосом на общей раме. Внутри бака расположены решетки с отверстиями для равномерного распределения потока воды при перемешивании соли по всей поверхности дна бака и поплавок для забора отстоенного раствора. Для предотвращения засорения насоса и магистралей на входном штуцере поплавка установлен стакан с отверстиями. В дне бака расположена сливная магистраль для спуска загрязненной или промывной воды в канализацию. Бак-накопитель 3 выполнен из винипласта. В дне бака расположен сливной патрубок с запорным вентилем В3 для спуска осадка или промывной воды в канализацию. Основной элемент установки – электролизер (рис.9), выполненный в виде электролитической ванны из антикоррозийного материала (полипропилена или винипласта) с расположенными в ней пакетом графитовых электродов и проточными водяными теплообменниками.
Рис.9 Принципиальная схема непроточного электролизера
Пакет графитовых электродов состоит из системы токоподводящих 4 и промежуточных 5 электродов. Электроды собираются в общий пакет с помощью стяжек, фиксирующих шайб, обеспечивающих поддержание заданного межэлектродного расстояния, и зажимных гаек. Для предотвращения токов утечки торцевые поверхности электродов закрывают накладками. Все указанные элементы изготовлены из винипласта. Для отсоса электролизных газов над поверхностью электролитической ванны установлен зонт вытяжной вентиляции. Установка работает следующим образом: в растворный бак загружают обычную неочищенную техническую поваренную соль, заливают воду и с помощью насоса производят перемешивание до получения насыщенного раствора поваренной соли (280-300 г/л NaCl). Приготовленный раствор насосом по трубопроводу подают в электролизер, где его водопроводной водой разбавляют до рабочей концентрации 100-120 г/л, подают в теплообменник охлаждающую воду и затем включают выпрямительный агрегат. При подаче напряжения на токоподводящие электроды в межэлектродном пространстве выделяются пузырьки газа. И как только плотный электролит попадает в межэлектродное пространство, он сразу же насыщается пузырьками газа и вытесняется из кассеты следующей порцией раствора. Таким образом устанавливается естественная циркуляция электролита, и вся масса раствора поваренной соли, находящейся в ванне, постепенно проходит через электролитическую кассету, подвергаясь электролизу. Процесс электролиза ведут до получения требуемой концентрации активного хлора, после чего готовый раствор сливают в бак-накопитель и весь цикл повторяется сначала. Отложения солей жесткости удаляются переодически путем смены полярности электродов. Наиболее простыми по конструкции являются установки производительностью до 1 и 5 кг хлора в сутки (ЭН-1 и ЭН-5), работающие в режиме неглубокого разложения соли (до 6-7%-ного). Эти электролизеры предназначены для очистных сооружений с расходом хлора до 5 кг/сут. С целью упрощения конструкции и эксплуатации установки выполнены без охлаждающих устройств. Электролизеры ЭН-1 и ЭН-5 на получение 1 кг активного хлора расходуют 12-15 кг поваренной соли. Некоторый перерасход соли оправдывается простотой обслуживания установки, а также тем, что общий суточный расход соли составляет всего 15-75 кг. Электролизеры ЭН-25 и ЭН-100 производительностью 25 и 100 кг хлора в сутки работают в режиме глубокого разложения (10-12%-ного) и более экономичны. Столь высокое использование поваренной соли достигается в результате применения охлаждающих устройств. Техническая характеристика электролизных установок непроточного типа приведена в табл. 1. Электролизные установки типа ЭН могут работать и при применении в качестве исходного рассола подземных минерализованных вод при условии, что концентрация хлоридов в них не ниже 50 – 60 г/л. Таблица 1. Техническая характеристика электролизных установок непроточного типа
Оснащение электролизеров типа ЭН окисно-рутениевыми анодами, позволяет создать более производительные установки и снизить расход соли и электроэнергии на производство 1 кг активного хлора в 2 – 2,5 раза [15]. В 1995 году Бахиром В. М. был разработан процесс ионселективного электролиза с диафрагмой, реализованный затем в 1996 году в установках АКВАХЛОР. Установки АКВАХЛОР – это компактные безопасные установки, позволяющие получать из водного раствора хлорида натрия концентрацией 200 – 250 г/л раствор смеси оксидантов, представленный хлором, хлорноватистой кислотой, диоксидом хлора, озоном и гидропероксидными соединениями (рис. 10). Процесс происходит под давлением Установки выпускаются ООО "Лаборатория Электротехнологии" (ООО "ЛЭТ") в виде модулей производительностью от 30 до 500 граммов смеси оксидантов в час. Для получения 1 кг оксидантов в установках АКВАХЛОР расходуется не более 1,7 – 2,0 гк сухого хлорида натрия и около 2 кВт*ч электроэнергии. В электрохимическом реакторе установок АКВАХЛОР основной является реакция выделения молекулярного хлора в анодной камере и образования гидроксида натрия в катодной камере:NaCl + H2O – e ®NaOH + 0,5 H2 + 0,5 Cl2Одновременно, с меньшим выходом по току протекают реакции синтеза диоксида хлора непосредственно из солевого раствора, а также из соляной кислоты, которая образуется при растворении молекулярного хлора в прианодной среде (Cl2 + H2O ‹—› HClO + HCl): 2NaCl + 6H2O – 10e ® 2ClO2 + 2NaOH + 5 H2 ; HCl + 2H2O - 5e ® ClO2 + 5 H+ . Кроме того, в анодной камере происходит образование озона за счет прямого разложения воды и за счет окисления выделяющегося кислорода: 3H2O - 6e ® O3 + 6H+ ; 2H2O - 4e ® 4H+ + O2 ; откудаO2 + Н2O - 2e ® O3 + 2 Н+ С малым выходом по току протекают реакции образования соединений активного кислорода: H2O - 2e ® 2H+ + O ; Н2О - е ® HO + Н+ ; 2H2O - 3e ® HO2 + 3H+ .
Рис.10 Принципиальная схема технологического процесса работы установки АКВАХЛОР-500 Установки АКВАХЛОР позволяют на месте потребления получить из раствора хлорида натрия два продукта - хлор и каустическую соду в необходимом количестве в любое время. Поскольку свежеполученный хлор содержит небольшое количество других оксидантов (диоксид хлора, озон), то побочные продукты хлорирования в воде, такие, например, как хлороформ, не образуются. Также раствор оксидантов, в отличие от традиционной хлорной воды, эффективно удаляет биопленки с внутренней поверхности водоводов, что исключает необходимость аммонизации, уменьшает скорость коррозии водоводов и придает воде отличные органолептические свойства [24].
Однако обследование водопроводной станции нефтеперерабатывающего завода «Славнефть» в 2009 году выявило непостоянство установки АКВАХЛОР по производительности. Этот недостаток заставляет усомниться в надежности установки и требует достаточно критического отношения к ее применению. Обеззараживание воды при исходном содержании в ней хлоридов не менее 20 мг/л и жесткости до 7 мг*экв/л может быть достигнуто прямым электролизом. Еще в конце 19 в. Было обнаружено, что при пропуске обрабатываемой воды через электролизер под действием электрического тока образуются соединения, которые обеззараживают воду непосредственно в потоке. Эта технология обработки воды не связана с применением каких-либо привозных реагентов, а ее аппаратура отличается компактностью и простотой эксплуатации. Реакции прямого электро-окисления органических соединений могут идти либо путем взаимодействия между органическими молекулами и кислородосодержащими частицами, либо путем прямого окисления веществ на аноде с образованием новых продуктов. Сущность прямого окисления заключается в том, что молекула органического вещества, адсорбируясь на поверхности анода, отдает электроны с одновременной или предшествующей гидратацией. По мере увеличения количества электричества, приходящегося на 1 л обрабатываемой воды, степень очистки воды возрастает. Однако во всех случаях при любом инициальном заражении требуемый эффект обеззараживания наблюдается только при определенной величине остаточного хлора. Результаты санитарно-бактериологических исследований подтверждают, что это является основным критерием бактериальной надежности воды. Несмотря на возможность образования в процессе электролиза различных соединений и окислителей, основное влияние на эффект обработки воды также оказывает активный хлор. Следовательно, с целью создания экономичного метода обеззараживания воды процесс ее прямого электролиза необходимо проводить при условиях, обеспечивающих максимально возможный выход хлора по току. Процесс прямого электролиза протекает в два этапа: электрохимическое получение окислителей и их смешивание с обеззараживаемой водой. Одним из основных факторов процесса является вид применяемого анода. Платино-титановые аноды (ПТА) и окисно-рутениевые аноды (ОРТА) обладают удовлетворительными электрохимическими и механическими показателями и позволяют наиболее экономично вести процесс электролиза. Оптимальная плотность тока при электролизе с использованием ОРТА составляет 1,5 – 2,0 кА/м2. Выход по току на ПТА практически не изменяется от плотности тока в интервале 1,0 – 4,0 кА/м2. На производительность электролизеров и технико-экономические показатели их работы оказывают влияние такие режимные параметры, как прикладываемое напряжение на разрядный промежуток, плотность тока, межэлектродное расстояние, температура и расход электролита. На рис.11 приведены зависимости изменения выхода хлора по току от концентрации Cl- при межэлектродных расстояниях, равных 3 и 6 мм, полученных при напряжении на разрядный промежуток Uот 6 до 10 В [15].
Рис.11. Зависимость выхода хлора по току на ОРТА от концентрации хлоридов в воде при межэлектродном расстоянии 3 мм (а) и 6 мм (б) Отечественная промышленность серийно выпускает установки прямого электролиза «Поток» с анодами из диоксида рутения и катодами из титана, которые чередуются с зазором между пластинами 3 мм. Установка состоит из электролизера, блока питания и замкнутого кислотного контура. Электролизер выполнен в форме параллелепипеда, внутри которого размещен пакет электродов. При одноразовом проходе под давлением обрабатываемой воды снизу вверх в межэлектродном пространстве электролизера обеспечивается ее обеззараживание, величина остаточного хлора в воде через 30 мин контакта составляет 0,3 – 0,5 мг/л. Образование катодных солеотложений значительно сокращает срок стабильной непрерывной работы установки. Поэтому необходима периодическая промывка аппарата 3 – 5%-ным раствором соляной кислоты [4].
Рис.12. Конструкция электролизера типа «Поток»
Из графиков, приведенных на рис. 11 видно, что выход хлора по току практически не зависит от межэлектродного расстояния и прикладываемого напряжения U0. Однако изменение этих величин существенно влияет на плотность тока. Повышение напряжения U0, естественно приводит к росту рабочей плотности тока. При постоянном напряжении на разрядный промежуток плотность тока снижается пропорционально увеличению межэлектродного расстояния. Уменьшением межэлектродного расстояния (с 3 до 2 мм), можно понизить сопротивление и тем самым снизить высокие энергозатраты на осуществление процесса прямого электролиза. Используемая литература 1.Порядин А.Ф. Развитие водоснабжения в России. ХХ век. М., "Издательский дом НП", 2003. 96 с.2. Сличенко А. В., Кульскпп Л. А., Мацксвнч Е. С. Современное состояние методов окисления примесей воды и перспективы хлорирования // Химия и технология воды. 1990. Т. 12. № 4.3. Селюков А.В. и др. Кондиционирование подземных вод озонированием. Сборник научных трудов НИИ ВОДГЕО, вып. 5, М.: 2004 г.4. Фрог Б.Н., Левченко А.П. Водоподготовка: Учебн. Пособие для вузов. М. Издательство МГУ, 1996г. 680 с.5. Кожинов В.Ф., Кожинов И.В. Озонирование воды. – М., Стройиздат., 1974г. 160 с.6. Методические рекомендации по применению озонирования и сорбционных методов в технологии очистки воды от загрязнений природного и антропогенного происхождения. – М., 1995.7. Чамаев В.Н, Йоффе А.В., Виграненко Л.В. Борьба с биологическими обрастаниями в промышленных системах водоснабжения. – М: НИИТЭХИМ., 1980г. 8. Обоснование применения ультрафиолетовой технологии дезинфекции воды на очистных сооружениях водопровода и канализации ВАЗа: ТЭО 407.Р7/2-НВК.ПЗ/АО "Ростовский Водоканал". – Ростов-на-Дону, 1994.9. Schechter D.S., Singer Ph.C. Formation Of Aldehydes During Ozonation. Ozone Sci. and Engin. 17. 1. 1995г.10.Правила безопасности при производстве, хранении, транспортировании и применении хлора (утв. постановлением Госгортехнадзора РФ от 5 июня 2003 г. N 48).11. Кузубова Л. И., Кобрина В. Н. Химические методы подготовки воды (хлорирование, озонирование, фторирование): Аналитический обзор. — Новосибирск: СО РАН, ГННТБ, НИОХ, 1996. — Т. Выпуск 42. — 132 с.12. ГОСТ 11086-76 «Гипохлорит натрия. Технические условия».13. Гипохлориты // Химическая энциклопедия / Главный редактор И. Л. Кнунянц.— М.: Советская энциклопедия, 1988.—Т. 1.14. Кубасов В.Л., Банников В.В. Электрохимическая технология неорганических веществ: Учебн. Для техник. — М.: Химия, 1989. — 288 с.15. Медриш Г.Л. и др. Обеззараживание природных и сточных вод с использованием электролиза. — М.: Стройиздат, 1982. — (Охрана окружающей среды). Используемые журнальные статьи 16. Ягуд Б.Ю. Хлор как дезинфектант – безопасность при применении и проблемы замены на альтернативные продукты // 5-й Международный конгресс ЭКВАТЭК-2002 Вода: экология и технология. 4-7 июня 2002 г.17. Т. И. Иксанова, А. Г. Малышева, Е. Г. Растянников и др. «Гигиеническая оценка комплексного действия хлороформа питьевой воды Журнал “ГИГИЕНА И САНИТАРИЯ” №2 2006г.».18. Бахир В.М. Дезинфекция питьевой воды: проблемы и решения // Вода и экология. 2003г, №1.19. Новиков Ю.В., Цыплакова Г.В. и др. Санитарно-эпидемиологический надзор за применением УФ-излучения в подготовке питьевой воды // Водоснабжение и санитарная техника. 1998, №12.20. Кожевников А.Б., Петросян О.П., Антонюк Л.П. Современное состояние и тенденции развития хлораторов инжекционного типа в России и странах СНГ. Материалы научно-практической конференции Международного водного форума «АКВА Украина – 2003» 4-6 ноября 2003. Киев. 2003г. 21. Медриш Г.Л. Оборудование и приборы для обеззараживания воды // Водоснабжение и санитарная техника. Стройиздат, N 2, 1993г. 22. Арутюнова И.Ю. Исследование различных технологических режимов очистки воды, направленных на снижение содержания хлорорганических соединений в питьевой воде // 8-й Международный конгресс ЭКВАТЭК-2008 Вода: экология и технология. 2008г.23. Краснова М.Х. Опыт проектирования и строительства систем обеззараживания воды с использованием гипохлорита натрия и ультрафиолетового облучения // 8-й Международный конгресс ЭКВАТЭК-2008 Вода: экология и технология. 2008г.24. Бахир В.М. Дезинфекция питьевой воды: проблемы и решения // 8-й Международный конгресс ЭКВАТЭК-2008 Вода: экология и технология. 2008г.