Смекни!
smekni.com

Исследование кинетики реакции хлорирования бензола (стр. 2 из 3)

Опыт 6.

Определение выражения для скорости матричным методом. Для этого получим выражение для зависимости концентрации от времени и продифференцируем его по времени.

МатрицаХ:
1 20
1 40
1 60
1 80
1 100
1 120
1 160
1 200
Матрица Хт:
1 1 1 1 1 1 1 1
20 40 60 80 65 120 160 200
Матрица Xт·X:
8 780
745 98500
Ковариационная матрица
0,491329 -0,00376
-0,00376 3,85E-05
Матрица (Xт·X) - 1·Xт:
0,416185 0,34104 0,265896 0, 190751 0,1156069 0,0404624 -0,10982659 -0,2601156
-0,00299 -0,00222 -0,00145 -0,00067 9,634E-05 0,0008671 0,002408478 0,0039499
МатрицаВ:
0,013948
0,003627

Рассчитанное выражение для зависимости концентрации от времени:

Y=0.013948+0.003627t

Найдем графическое выражение.

Экспериментальные данные:

Т, мин С3 эксп.
20 0,08
40 0,163
60 0,24
80 0,315
100 0,374
120 0,435
160 0,581
200 0,753

Значения начальных скоростей по графику и расчетное одного порядка, примем расчетное значение за истинное: R=0,0036 (моль/(л ч)).

Опыт 7.

Определение выражения для зависимости текущей концентрации от времени матричным методом.

Матрица Х:

1 43
1 86
1 129
1 172
1 215
1 258

Продолжение.

1 344
1 430
Матрица Хт:
1 1 1 1 1 1 1 1
43 86 129 172 65 258 344 430
Матрица Xт·X:
8 1677
1527 439245
Ковариационная матрица
0,491329 -0,00175
-0,00175 8,34E-06
Матрица(Xт·X) 1·Xт:
0,416185 0,34104 0,265896 0, 190751 0,1156069 0,0404624 -0,10982659 -0,260115
-0,00139 -0,00103 -0,00067 -0,00031 4,481E-05 0,0004033 0,001120222 0,0018372
Матрица коэффициентов полинома В:
0,037746
0,00153

Уравнение зависимости выглядит следующим образом:

Y=0.037746+0.00153t

Определение графическим способом.

Экспериментальные данные:

Т, мин С3 эксп.
43 0,08
86 0,173
129 0,234
172 0,308
215 0,384
258 0,443
344 0,574
430 0,672

Значение начальной скорости: R=0,0015 (моль/(л ч)).

Опыт 8.

Нахождение вида зависимости концентрации от времени матричным способом.

Матрица Х:

1 6
1 12
1 18
1 24
1 30
1 36
1 48
1 60
Матрица Хт:
1 1 1 1 1 1 1 1
6 12 18 24 65 36 48 60
Матрица Xт·X:
8 234
269 10230
Ковариационная матрица
0,491329 -0,01252
-0,01252 0,000428
Матрица(XтX) 1Xт:
0,416185 0,34104 0,265896 0, 190751 0,1156069 0,0404624 -0,10982659 -0,260115
-0,00996 -0,00739 -0,00482 -0,00225 0,0003211 0,0028902 0,008028259 0,0131663
Матрица коэффициентов полинома В:
0,008006
0,011508

Графический метод.

Экспериментальные данные:

Т, мин С3 эксп.
6 0,073
12 0,14
18 0,22
24 0,285
30 0,353
36 0,427
48 0,575
60 0,684

Выражение, полученное матричным методом:

Y=0.008006+0.011508t

Значение начальной скорости: R=0,0115 (моль/(л ч)).

Опыт 9.

Расчет матричным методом.

Матрица Х:

1 4
1 8
1 12
1 16
1 20
1 24
1 32
1 40
Матрица Хт:
1 1 1 1 1 1 1 1
4 8 12 16 65 24 32 40
Матрица Xт·X:
8 156
201 4980
Ковариационная матрица:
0,491329 -0,01879
-0,01879 0,000963
Матрица(Xт·X) 1·Xт:
0,416185 0,34104 0,265896 0, 190751 0,1156069 0,0404624 -0,10982659 -0,260115
-0,01493 -0,01108 -0,00723 -0,00337 0,0004817 0,0043353 0,012042389 0,0197495
Матрица коэффициентов полинома В:
0,011139
0,016717

Уравнение будет выглядеть:

Y=0.011139+0.016717t

Графический метод.

Экспериментальные данные:

Т, мин С3 эксп.
4 0,073
8 0,142
12 0, 204
16 0,283
20 0,359
24 0,419
32 0,547
40 0,67

Значение начальной скорости: R=0,0167 (моль/(л ч)).

Определение порядков реакций методом начальных скоростей

Метод заключается в том, что строят графические зависимости LgR0=f(LgC0) или/и R0=f(C0) для опытов, где значения концентраций других компонентов, кроме исследуемого, одинаковы.

Ro Co1 Co2 LgRo lgCo1 lgCo2 Ck LgCk
0,0056 6 0,3 -2,251812 0,7781513 -0,522878 0,1 -1
0,0056 6 0,6 -2,251812 0,7781513 -0,221848 0,1 -1
0,0051 6 0,9 -2,292429 0,7781513 -0,045757 0,1 -1
0,0036 4 0,6 -2,443697 0,60206 -0,221848 0,1 -1
0,0015 2 0,6 -2,823908 0,30103 -0,221848 0,1 -1
0,0115 6 0,6 -1,939302 0,7781513 -0,221848 0,2 -0,69897
0,0167 6 0,6 -1,777283 0,7781513 -0,221848 0,3 -0,522878
Определение порядка реакции по компоненту А1-бензол.
Ro Co1 Co2 Ck LgRo lgCo1
0,0056 6 0,6 0,1 -2,251812 0,7781513
0,0036 4 0,6 0,1 -2,4436975 0,60206
0,0015 2 0,6 0,1 -2,8239087 0,30103

Зависимость LgR0=f(LgC01) Зависимость R0=f(C01)

Порядок по компоненту А1 (бензолу) принимаем равным 1, т. к.1,2 примерно равно 1.

Определение порядка по катализатору.

Ro Co1 Co2 Ck LgRo LgCk
0,0056 6 0,6 0,1 -2, 207608 -1
0,0115 6 0,6 0,2 -1,879426 -0,69897
0,0167 6 0,6 0,3 -1,790485 -0,522878

Зависимость R0=f(Ck) Зависимость LgR0=f(LgCk)


Порядок по катализатору примем равным 1.

Порядок по хлору определять не будем, т. к. его концентрацию поддерживают постоянной. Скорость реакции от него не будет зависеть.

Таким образом, вид кинетического уравнения для нашей реакции выглядит следующим образом:

R=kC1Ck∑

Определение вида кинетической модели интегральным методом

Уравнение реакции:

C6H6(A1) + Cl2(A2) = C6H6Cl(A3) + HCl(A4)

d [A3] /dt = r = k [A1] [A2] = - d [A1] /dt

Проинтегрируем по t: - òd [A1] / [A1] = òk [A2] dt

ln [A1] 0 – ln [A1] = k [A2] t, т. к. концентрация хлора (А2) постоянна, выносим ее за знак интеграла.


Ln([A1] 0/ [A1]) = k [A2] t, обозначим k [A2] º Кнабл.

Определим графически значение Кнабл по всем опытам.

№опыта 1 2 3 5
Т, мин Ln(C01/C1) Ln(C01/C1) Ln(C01/C1) Ln(C01/C1)
12 0,0125788 0,0122413 0,012072581 0,0115666
24 0,0236099 0,0248051 0,023780529 0,0246343
36 0,0356272 0,0377019 0,036663984 0,0342464
48 0,0458694 0,0493653 0,046742263 0,0481404
60 0,0613436 0,0570996 0,062230077 0,0579823
72 0,0743644 0,0750828 0,07364654 0,0693501
96 0,0926637 0,0952268 0,094310679 0,1007416
120 0,115785 0,1225444 0,119534569 0,1221676
№опыта 4 6 7 8
Т, мин Ln(C01/C1) Т, мин Ln(C01/C1) Т, мин Ln(C01/C1) Т, мин Ln(C01/C1)
13 0,0132541 20 0,020202707 43 0,040822 6 0,0122413
26 0,026344 40 0,04160355 86 0,0904719 12 0,0236099
39 0,0403013 60 0,061875404 129 0,1244301 18 0,0373558
52 0,0514687 80 0,082023835 172 0,1672359 24 0,0486652
65 0,0672087 100 0,098164249 215 0,2131932 30 0,060635
78 0,0740054 120 0,115130307 258 0,2503863 36 0,073826
104 0,1007416 160 0,15694625 344 0,3382739 48 0,1007416
130 0,1265085 200 0, 208562868 430 0,4094731 60 0,1210383