Смекни!
smekni.com

Процесс выпаривания растворов (стр. 4 из 7)

Допущения:

1. Общее сопротивление переносу из фазы в фазу складывается из сопротивления двух фаз

2. На поверхности фазы находятся в равновесии, равновесие на границе фаз устанавливается быстрее изменения средней концентрации в ядре фазы.

18. Уравнение массопередачи, движущая сила

М=КyF (C0y-C0y*) t= КyFΔyср

М=КxF (C0x*-C0x) t = КxFΔxср

dM=-G dy =Ky (y-y*) dF

подставим в M=G (yн-yк)

19. Основы расчета массообменной аппаратуры, расчет диаметра и высоты массообменного аппарата

Расчет диаметра производится по уравнению расхода: Q=Sw0 (Q-объемный расход фазы, w0-фиктивная скорость фазы). Для круглого аппарата:

значит D=
. Скорость определяется исходя из технико-экономических расчетов.

Высота массообменного аппарат определяется в зависимости от типа контакта фаз.

Высота аппаратов с непрерывным контактом. Высота определяется на основе уравнения массопередачи, выраженного через объемный коэффициент массопередачи. M=КyαVΔyср. Рабочий объем аппаратеV=SH. H=M/ (КyαSΔyср) =h0yn0y.

Высота аппаратов со ступенчатым контактом. Для определения числа ступеней используют графические и аналитические методы. Рабочую высоту аппарата находят через число действительных ступеней, пользуясь зависимостью: H=nдh (h-расстояние между ступенями).

20. Определение коэффициента массопередачи

Уравнение аддитивности фазовых сопротивлений

1/Kx=1/βx+1/βym


При кривой линии равновесия mи коэффициенты Kизменяются по длине аппарата. В этом случае при расчете его обычно разбивают на участки, в пределах каждого из которых mпринимают постоянной величиной и используют среднее для всего аппарата значение K.

21. Определение движущей силы МОП, ЧЕП, ВЕП

Определение средней движущей силы процесса массопередаче

Число единиц переноса выражается интегралами (

), которые могут быть решены аналитически и графически. Методом граф. интегрирования через площадь fи масштабов M1и M2: n0y=fM1M2.

Упрощенный граф. метод.

Высота единиц переноса.

ВЕП обратна пропорциональна объемному коэффициенту массопередачи.

22. Определение числа ступеней (теоретическая и действительная тарелки КПД - локальный тарелки, колонны)

Теоретическая тарелка - такая ступень или тарелка, которая соответствует некоторому участку аппарата, на котором жидкость полностью перемешиваются, а концентрации удаляющихся фаз являются равновесными.

Существуют графические и аналитические методы.

Метод кинетической кривой.

Проводят линии A1C1 и т.п.

Делят их в отношении к-та извлечения Ey

Проводят линию

Строят ступеньки

Нt учитывается влияние перемешивание.

При Ey =1кинетическая кривая совмещена с кривой равновесия.

Определение числа теоретических тарелок.

Для перехода к числу действительных тарелок - КПД колоны nд=nт/КПД. КПД - учитывает реальную кинетику массообмена на действительных тарелках, на которых никогда не достигается равновесия.

КПД зависит от скорости движения фаз, перемешивания, направления движения, физ. свойств фаз.

КПД тарелки - отношение изменения концентрации данной фазы на тарелке к движущей силе на входе той же фазы в ступень.

23. Метод кинетической кривой

Проводят линии A1C1 и т.п.

Делят их в отношении к-та извлечения Ey

Проводят линию

Строят ступеньки

Нt учитывается влияние перемешивание.

При Ey =1кинетическая кривая совмещена с кривой равновесия.

24. Абсорбция, общие сведения, типы абсорберов, насадки, требования к насадкам и абсорбентам, гидродинамические режимы работы абсорберов

Абсорбцией называется процесс поглощения газов или паров из газовых или парогазовых смесей жидкими поглотителями (абсорбентами).

При физической абсорбции поглощаемый газ (абсорбтив) не взаимодействует химически с абсорбентом. В случае образования химического соединения между абсорбтивом и абсорбентом процесс называется хемосорбцией.

Физическая абсорбция в большинстве случаев обратима, на чем основано выделение поглощенного компонента из абсорбента - десорбция.

Абсорбционные процессы широко распространенны в химической технологии, например: поглощение водой серного ангидрида, хлористого водорода и двуокиси азота с образованием соответствующих серной, соляной и азотной кислот; поглощение паров бензола в коксохимическом производстве, поглощение компонентов природного и попутного газов в нефтехимии и нефтепереработке и т.д.

По способу создания этой поверхности абсорберы условно делят на следующие группы:

1. Поверхностные и пленочные.

2. Насадочные.

3. Барботажные (тарельчатые).

4. Распыливающие.

Требования к насадкам:

обладать большой поверхностью в единице объема (удельной поверхностью);

хорошо смачиваться орошающей жидкостью;

оказывать малое гидравлическое сопротивление потоку газа;

равномерно распределять орошающую жидкость;

быть стойкой к химическому воздействию среды в колонне;

иметь малый насыпной вес;

обладать высокой механической прочностью;

быть достаточно дешевой.

Режимы работы:

пленочный - наблюдается при небольших плотностях орошения и малых скоростях газа. Заканчивается он в переходной точке А, которая называется точкой подвисания.

подвисание. В режиме подвисания спокойное течение пленки нарушается: появляются завихрения и брызги, т.е. создаются условия перехода к барботажу. Это способствует увеличению интенсивности массообмена. Этот режим заканчивается в переходной точке В.

эмульгирование - возникает в результате накопления жидкости в свободном объеме насадки.

Гидравлическое сопротивление колонны при этом резко возрастает, что характеризуется отрезком ВС

режим уноса - отвечает обратному движению жидкости, выносимой из аппарата потоком газа. Режим аварийный и на практике не используется.

25. Статика процесса абсорбции, влияние температуры и давления на процесс абсорбции

При абсорбции содержание газа в растворе зависит от свойств газа и жидкости, от общего давления, температуры и парциального давления распределяемого компонента.

Для случая бинарной газовой смеси, состоящей из распределяемого компонента А и газа-носителя В, взаимодействуют две фазы и три компонента. Поэтому по правилу фаз число степеней свободы будет равно

С=К-Ф+2=3-2+2=3

Это значит, что для данной системы газ-жидкость переменными являются температура, давление и концентрации в обеих фазах.

Следовательно, при постоянных температуре и общем давлении зависимость между концентрациями в жидкой и газовой фазах будет однозначной. Эта зависимость выражается законом Генри: парциальное давление газа над раствором пропорционально мольной доле этого газа в растворе.

,

Числовые значения коэффициента Генри для данного газа зависят от природы газа и поглотителя и от температуры, но не зависят от общего давления.

Зависимость константы Генри от температуры выражается уравнением

,

где q - дифференциальная теплота растворения газа;

С - постоянная, зависящая от природы газа и абсорбента.

Для идеальных растворов связь между мольными долями компонента в газе и в растворе можно оценить по закону Дальтона

,

Тогда уравнение равновесия примет вид

ma-коэффициент распределения или константа фазового равновесия.

26. Материальный баланс абсорбции, влияние удельного расхода абсорбента на размеры аппаратов

Примем расходы фаз по высоте аппарата постоянными и выразим содержание поглощаемого компонента в относительных единицах.

Тогда уравнение материального баланса будет иметь вид:

G (Yн-Yк) =L (Xк-Xн)

Удельный расход: l=L/G= (Yн-Yк) / (Xк-Xн)

Lmin= (L/G) min= (Yн-Yк) / (Xк*-Xн)

Увеличение удельного расхода ведет к снижению высоты аппарата и увеличению его диаметра. Оптимальный удельный расход определяется технико-экономическим расчетом.

27. Скорость процесса абсорбции

Скорость процесса абсорбции характеризуется уравнением:

М=КyFΔyср и М=КХFΔхср

Коэффициенты определяются: