“Молекулярные спектры”
Часть2. Электронные спектры поглощения молекул.
Часть3. Колебательные спектры поглощения молекул.
Часть 1. Общие характеристики спектров. Теоретический минимум.
· Энергия спектрального перехода.
· Энергетические характеристики.
· Диапазоны излучения и области молекулярной спектроскопии.
Спектральный переход в атоме или в молекуле вызван поглощением или испусканием электромагнитного излучения. Электромагнитное излучение состоит из частиц-фотонов, не имеющих массы покоя. Энергия фотона E определяется частотой излучения и равна Eh Коэффициент пропорциональности - константа Планка, равная h=6.627´10-34Дж×с=6.627´10-27 эрг×с. Поглощение фотона приводит к возбуждению атома или молекулы с более низкого уровня Eна более высокий энергетический уровень E*. Баланс энергии при переходе описывается уравнением Планка-Эйнштейна
.Уровни дискретны, и поглощаемые энергии также дискретны.
Поэтому регистрируемые частоты образуют также дискретное множество, и их можно нумеровать индексами уровней:
.В большинстве молекулярных спектрах в первую очередь проявляется переход с основного на первый возбуждённый уровень. Единицы измерения энергии диктуются возможностями наиболее точной калибровки регистрирующего устройства.
В области оптической спектроскопии излучение разделяют с помощью дифракционных решёток, призм, линз. Очень хорошо разработаны способы точного измерения длин волн. Поэтому и энергию излучения принято калибровать в таких единицах, которые наиболее соответствуют конкретной экспериментальной технике. Такой единицей является обратная длина волны 1/. Её называют волновым числом и обозначают
.Вся накопленная до настоящего времени информация об энергиях переходов выражается в обратных сантиметрах (см-1). Этим обстоятельством диктуется выбор системы единиц. Удобна система СГС (сантиметр, грамм, секунда). Единица энергии в ней ЭРГ.
Связь длины волны с частотой обратно пропорциональная, а с волновым числом прямо пропорциональная, константа пропорциональности – скорость света c=3´1010см/с=3´108м/с:
.Отсюда уравнение Планка –Эйнштейна можно представить в виде
На этом основании можно уровни энергии непосредственно выразить в единицах волнового числа. Так поступают в атомной спектроскопии.
Если измерено волновое число спектрального перехода, то одно из равенств даёт
Следуя этой формуле, уровни энергии можно выразить в единицах волнового числа. Для этого следует разделить их на скорость света и константу Планка
Так поступают в атомной спектроскопии.
Уровни энергии, выраженные в единицах волнового числа, называют спектральными термами. Это величины Tn и Tm.
Электронные переходы в молекулах осуществляются ориентировочно в области значений волновых чисел порядка 104 см-1.
Длины волн такого излучения лежат в диапазоне 10-4¸10-5 см.
Это сотни нанометров (1 нм=10-9м=10´10-8см=10 A0).
Область цветного зрения человека охватывает длины волн 400-700 нм.
Непосредственно к этой области примыкают диапазоны:
- ультрафиолетовый со стороны квантов большей энергии и
- инфракрасный со стороны квантов меньшей энергии.
Обычная область изучения валентных электронных возбуждений молекул охватывает видимый и ближний ультрафиолетовый диапазоны.
Колебательные переходы в молекулах осуществляются ориентировочно в области значений волновых чисел порядка 102¸103 см-1.
Длины волн такого излучения лежат в диапазоне 10-2¸10-3 (до 10-4) см.
Это инфракрасный диапазон излучения. С ним граничит видимый (со стороны
больших энергий) и микроволновой (со стороны меньших энергий)
Обычная область изучения молекулярных колебаний охватывает инфракрасный диапазон и примыкает к диапазонам излучений видимого (обертоны колебаний) и микроволнового (вращательно-колебательные движения молекул).
Часть 2. Электронные спектры поглощения. Электронные спектры красителей и модель одномерного ящика.
Для химии наибольший интерес представляют спектральные переходы электронов между уровнями граничных орбиталей молекул (ВЗМО и НСМО).Наиболее лабильные внешние валентные электроны молекул переходят на близлежащий вакантный уровень. Электронные спектры молекул обычно регистрируют в виде широких полос с достаточно выраженным максимумом поглощения (рис. ).
Среди всех регистрируемых полос электронного спектра при переходе ВЗМО«НСМО частота, волновое число и энергия кванта минимальны, а длина волны максимальна. Реальные полосы часто не столь гладкие кривые из-за дополнительных переходов в молекуле...
Полезно рассмотреть задачу, в которой измеренные энергетические параметры электронных спектров удаётся количественно связать с уровнями граничных МО. Это классическая задача о максимумах полос поглощения в электронных спектрах карбоцианиновых красителей, решённая Бейлисом и Куном.
Примитивная модель одномерного потенциального ящика оказывается на удивление точной при описании энергий возбуждения ВЗМО«НСМО.
Задача 1
В гомологическом ряду, образованном четырьмя карбоцианиновыми красителями измерены максимумы полос электронных спектров поглощения. Формулы соединений и
измеренные величины следующие. Определите длину повторяющегося молекулярного фрагмента в гомологическом ряду полиенов.
Измерено | Вычисления студентов в ходе решения задачи | |||
max | max см-1 | (9+2k)×max | Значения 1/a2 | < aCH >, |
k | Экспер. | см | ||
0 | 5900 | 16949.15 | 9×16949 = 152540 | 5.0325×1015 |
1 | 7100 | 14084.50 | 11×14084 = 154924 | 5.1117×1015 |
2 | 8200 | 12195.12 | 13×12195 = 158535 | 5.2305×1015 |
3 | 9300 | 10752.69 | 15×10753 = 161295 | 5.3196×1015 |
Усреднение Þ | 0.5174×1016 | 1.39×10-8 |
1) Предварительные соображения.
Частота спектрального перехода при электронном возбуждении молекулы отчётливо изменяется с увеличением числа звеньев в мостике -( C=C)k-. Простейшая из характеристик этой цепи – её длина. Она складывается из длин связей разной кратности -C-C- и -C=C-.
В цепи сопряжения эти длины чередуются но, как известно, частично выравниваются. Однако их суммарная протяжённость почти не меняется.
2) Нам предстоит:
– связать наблюдаемые длины волн или частоты поглощаемого излучения с абсолютными размерами молекул с помощью теоретической модели,
– вычислить усреднённую длину связи C¼C в цепи -сопряжения из имеющихся спектральных данных.
–сравнить результаты расчёта с экспериментальными данными.
3) Примем во внимание, что
5.1 Простейшая теоретическая модель для одной частицы в квантовой механике это известная модель одномерного потенциального ящика, в которой уровни энергии зависят от линейной протяжённости системы.
5.2 Модель ящика используем для граничных -электронов, которые находятся на высшей занятой МО (ВЗМО).
5.3 С ВЗМО электрон в молекуле полиена совершает спектральный переход, на ближайшую низшую свободную МО (НСМО). Её также называют низшей вакантной МО (НВМО).
5.4 Примем, что область делокализации -электронов, в том числе и на граничной занятой МО охватывает не только всю систему сопряжения, но и простирается далее за неё (для простоты примем по половине связи). Вследствие принципа Гейзенберга электрон невозможно локализовать.
5.5 При спектральном возбуждении молекулы поглощается фотон, и за счёт поглощённой энергии один электрон совершает переход между граничными МО (-ВЗМО Û-НВМО).
5.6 Энергия перехода, а с нею длина волны, частота и волновое число поглощаемого излучения определяется разностью уровней DE этих двух граничных МО (ГМО).
5.7 Энергетические уровни ГМО необходимо выразить как функции от длины полиеновой цепи между двумя одинаковыми концевыми гетероциклическими азотсодержащими остатками в молекулах соединений в изучаемом ряду красителей.