Здесь гибридный уровень трижды вырожден и лежит ближе к π-уровню, котоpый представлен в формуле (3.60) со вдвое большим весом по сравнению с Еσ.
Информация, полученная нами в этом разделе, окажется очень полезной при качественном анализе химической. связи и теории валентности.
3.4. Совместные измерения динамических переменных. Коммутация операторов и соотношения неопределенностей Гейзенберга.
3.4.1. Вновь обратимся к анализу измерений. На основе результатов, полученных в разделах 2.2.3, 2.3.2 и 3.2.2, мы в состояниирешить очень важную проблему, связанную с совместными измерениями различных динамических переменных. Исследуем эту проблему на основе анализа операторных уравнений, имитирующих акты измерений. Последовательному измерению двух величин λ и μ соответствует произведение связанных с ними операторов
3.4.2. Вопрос о совместности измерений двух величин сводится к тому, можно ли без последствий изменять порядок измерений. Если результаты не зависят от последовательности измерений, то операторные схемы
или, собирая влево от функции все операторы, получим:
Формула (3.62) называется коммутационным (перестановочным) соотношением, а разность произведений операторов, записанных в разной последовательности, носит название коммутатора
3.4.3. Коммутатор равен нулю для величин, которые могут наблюдаться одновременно. Коммутирующие операторы обладают одинаковыми наборами собственных функций. Если же коммутатор отличен от нуля, то совместное измерение величин не имеет смысла, т.е. такой прибор в принципе невозможно построить.
3.4.4. Рассмотрим одновременные измерения величин, у которых произведение их размерностей совпадает с размерностью константы Планка ([энергия]·[время]). Таковыми являются:
а) импульс и координата в одномерном поступательном движении;
б) проекция момента импульса на ось и точное положение, ротатора на орбите при плоском вращении, определяемом углом φ;
в) энергия и время у нестационарной системы.
Для этих трех случаев составим коммутаторы, пользуясь формулами (2.10), (3.24) и (2.19). На основании уравнения (2.19) оператор гамильтона
В случае (3.66) волновая функция, на которую действует коммутатор, должна содержать временную часть.
Посмотрим, каков результат действий этих коммутаторов на волновую функцию на примере (3.64):
Таким образом, исследуемый коммутатор
Согласно равенству (3.67), во всех математических выражениях, где можно произвести группировку операторов
Формулы (3.67), (3.68) и (3.69) дают строгие операторные выражения принципа неопределенностей Гейзенберга, запрещающего одновременное точное измерение перечисленных пар переменных, и это принципиальное ограничение не связано с конструкцией прибора.