Смекни!
smekni.com

Радикальная сополимеризация акрилат- и метакрилатгуанидинов с виниловыми мономерами (стр. 8 из 20)

В ходе сополимеризации АА и МАА с ММА в растворах ДМСО относительная активность амидов падает, а эфира – растет[107]. Предположено, что для систем (мет)акриламида и мономера, не участвующего или слабо участвующего в образовании автоассоциатов или комплексов, изменение относительной активности мономеров обусловлено тем, что по мере протекания гомофазной сополимеризации уменьшается доля более активного амида, входящего в состав автоассоциатов этого мономера, и увеличивается доля менее активного мономера, образующего смешанные ассоциаты с акриламидными звеньями сополимера.

На примере системы МАА - ММА была предложена методика количественной оценки изменения относительных активностей мономеров при сополимеризации: использование способа Келена и Тюдоша [108] для определения r1 и r2 по данным среднего состава сополимеров при глубоких степенях превращения позволило определить изменяющиеся «интегральные» значения r1 и r2, достигаемые при каждой степени превращения мономеров в сополимер (при близких конверсиях в различных сериях опытов). Для рассматриваемой системы найдено, что при конверсии до 32% r1 постепенно уменьшается от 0,50 до 0,26, а r2 увеличивается от 4,2 до 5,0. При оценке относительных реакционных способностей в системе АА – СТ на основании данных о составе сополимера при высоких степенях превращения [109] в различных растворителях получены значения [110], заметно отличающиеся от найденных при малых конверсиях [91]. Значения, найденные в работе [110], можно отнести к интегральным r1 и r2.

Обратим внимание еще на одну особенность сополимеризации aмидсодержащих систем, которые можно отнести к «особым». В тройных системах [111], в состав, которых входят амиды, имеющие склонность к образованию различного рода ассоциатов, реакционная способность компонентов отличается от их реакционной способности в соответствующих бинарных системах, причем направление и степень отклонений зависят от характера межмолекулярных взаимодействий. Очевидно, природа ассоциатов, образованных в растворе двумя соединениями, может изменяться при появлении в системе третьего соединения. В связи с этим использование метода Алфрея и Голдфингера [112] вычисления составов тройных сополимеров на основании значений r1 и r2 соответствующих трех бинарных систем для амидсодержащих систем может давать результаты, заметно отличающиеся от экспериментальных. Это положение экспериментально подтверждено на примере тройных смесей мономеров, содержащих наряду с амидом также кислоту или аммониевую соль. Для системы АА – АН – МАК уже при малых степенях превращения характерно большее обогащение сополимеров нитрилом и кислотой, чем это следует израсчета (рис. 4).


Рис. 4. Зависимость вычисленного (1) и найденного экспериментально (2) состава терполимера от состава мономерной смеси (3) в системе АА (М)1— акрилонитрил (M2) — метакриловая кислота (M3) [307]

В системе МАА – гидрохлорид N,N-диэтиламиноэтилметакрилат-2-гидроксиэтилметакрилат получаемый сополимер содержал звеньев второго мономера меньше, а третьего – больше, чем по расчету [111].

При радикальной сополимеризации N-н-оксиакриламида и N,N-ди-бутилакриламида со СТ в среде толуола (25 °С) в присутствии этилалюми-нийсесквихлорида в качестве комплексообразователя получаются чередующиеся сополимеры [113].

Сополимеризация с ненасыщенными кислотами и их солями. Важной особенностью сополимеризации АА с мономерами, содержащими свободную или нейтрализованную кислотную группу, например, с n-стиролсульфо-кислотной, α, β-ненасыщенными одно- и двухосновными карбоновыми кислотами и их солями, является мультикомпонентность процесса в ионизирующих средах. Она заключается в том, что в системе имеет место зависящее от характера среды равновесие между различными формами сосуществования положительно и отрицательно заряженных частиц:

δ- δ+

А Х А- Х+ А- IIХ+ А- + Х+

Общая схема ионизационного равновесия не постулирует одновременного существования в системе всех четырех форм ионогенного мономера [молекулярной, ионной (контактные и разделенные пары) и свободных ионов], таких форм может быть три или две (например, А- IIХ+ и А- +X+) в зависимости от характера реакционной среды. Следствием мультикомпонентности системы является осложненный [87, 114] характер сополимеризации. Поэтому активность мономеров в реакции сополимеризации зависит от общей концентрации мономеров и состав; исходной мономерной смеси [115, 52, 116, 117], ионной силы растворов [52, 118-123], полярности растворителя [124] и степени превращение [125, 126]. При сополимеризации с ионогенными мономерами наблюдается также сильная зависимость конформационного состояние макромолекул от характера реакционной среды [52, 127, 128].

С уменьшением диэлектрической постоянной смеси воды и ДМСО начальная скорость сополимеризации АА с натриевой и калиевой солями n-стиролсульфокислоты понижается. Наблюдаемое при этой понижение реакционной способности амида связано со смещением равновесия между ассоциацией амида и его сольватацией в сторону последней, ростом комплексообразования между макрорадикалами ДМСО, уменьшением размеров макромолекулярных клубков, ведущим к понижению локальной концентрации мида в области, где имеются активные центры [52, 124].

Ввиду практической значимости сополимеров МАА и МАК целессообразно более подробное рассмотрение их синтеза. При получении этих сополимеров в 40%-х водных растворах (85 °С) по мере увеличение степени нейтрализации кислоты гидроксидом натрия (росте рН) отнссительная активность амида растет (от 0,28 до 0,64), а кислоты падает (от 2,6 до 0,4) [117]. С повышением рН уменьшается доля протонированных молекул амида и радикалов, на концах которых находятся элементарные звенья протонированного амида, и увеличивается степень диссоциации кислоты и соответствующего макрорадикала, т.е. имеют место ослабление отталкивания амидного радикала молекулы амида, усиление отталкивания кислотного радикала молекулы кислоты (анионов). Следовательно, увеличение r1 и уменьшение r2 могут быть обусловлены ростом k11 и падением k22 [117].

При сополимеризации АА и МАК наблюдается качественно такая же картина, как и при сополимеризации МАА и той же кислоты: при рН < 3, когда кислота очень слабо ионизирована, а константы скоростей роста и обрыва при ее гомополимеризации не зависят от концентрации ионов водорода, величины r1 и r2 практически постоянны при изменении рН. При этом r2 превышает r1 в еще большей степени, чем системе МАА - МАК. При рН > 3 значение r2 резко понижается [129].

Поскольку в системах амид – кислота оба компонента могут обуcлов-ливать «особый» характер систем, вполне естественно, что при сополимеризации до глубоких конверсии значения r1 и r2 недрерывно меняются. Непостоянство r1 и r2 в ходе сополимеризации АА и ненасыщенных кислот впервые было установлено при использовании малеината натрия, сукцината натрия и других солей [87, 121, 130] в качестве второго мономера.

На основании кинетических данных по сополимеризации АА и АК до 80%-й конверсии была сделана попытка определить относительной активности мономеров по методу Келена-Тюдоша [108], что, однако, не удалось (значения r1 и r2 оказались равными соответственно 0,50 ± 0,06 и 0,79 + 1,67). Колебания r2 в столь широких пределах, очевидно, обусловлены изменением реакционной способности в ходе сополимеризации, хотя сами авторы такого вывода ие делают [131].

Экспериментальные данные по кинетике начального периода сополимеризации в 7%-х (масс.) водных растворах МАА и метакрилата натрия, взятых в различных соотношениях, удовлетворительно описываются [132] известным уравнением [112, с. 377], которое предложили Мелвилл, Нобл и Уотсон. Согласно данному уравнению, обрыв контролируется химическими реакциями, а диффузионные процессы не учитываются. Вместе с тем, именно ввиду влияния диффузии на закономерности обрыва цепи указанное уравнение очень часто оказывается неприменимым к описанию кинетики сополимеризации. Предположено [132], что возможность использования уравнения при сополимеризации МАА и метакрилата натрия связана с тем, что в данной системе константы скоростей реакций обрыва (за счет взаимодействия одинаковых и различных радикалов) близки между собой [133]. В системе МАА - метакрилат натрия кривая зависимости начальной скорости сополимеризации от соотношения между мономерами проходит через слабо выраженный максимум, что при относительной близости констант скоростей обрыва определяется предпочтительностью перекрестного роста по сравнению с ростом за счет любой гомополимеризации (r1 < 1 и r2 < 1 [117]). Для системы АА – АК (вода, рН = 4,6) также наблюдается превышение скоростью сополимеризации скоростей гомополимеризации обоих мономеров [134].