Смекни!
smekni.com

Радикальная сополимеризация акрилат- и метакрилатгуанидинов с виниловыми мономерами (стр. 18 из 20)

Таблица 23

Образец Время осаждения, мин. Объем осадка, мм3 Остаточная мутность, %
1:99 35 3,4 63
5:95 60 4,0 56
70:30 15 4,5 34
Дист. вода+ каолин 140 2,0 55

Скорость осаждения (накопления осадка) и уплотнения осадка закономерно увеличиваются с повышением количества введенного сополимера.

Сравнивая параметры кинетической устойчивости сополимеров АА с МАГ и ПАА, можно видеть, что сополимеры проявляют значительно большую активность, судя по значениям объема и времени уплотнения осадка. Исходя из известных закономерностей динамики дисперсий, можно предположить, что под действием сополимеров образуются флоккулы большего размера или большей плотности, чем в присутствии полиакриламида.

Известно, что эффективность процесса флоккуляции высокомолекулярными соединениями повышается при добавлении в систему низкомолекулярных электролитов [209]. Низкомолекулярные электролиты, сжимая слой противоионов у поверхности коллоидных частиц и нейтрализуя заряд на их поверхности, облегчают подход макромолекул и их адсорбцию. Одновременно происходит изменение структуры макромолекул. Экранирование заряженных звеньев полимера и уменьшение сил внутримолекулярного отталкивания приводит к сжатию макромолекул. Сжатые макромолекулы, занимая меньший объем, плотнее укладываются на поверхности частиц, в результате чего общее количество адсорбированного полимера возрастает.

В качестве коагулянта использовали органомодифицированную бентонитовую глину месторождения Герпегеж. Выполненные нами опыты показали, что при добавлении флоккулянтов к суспензии каолина, к которой предварительно был добавлен органомодифицированный монтмориллонит (ОМ) резко уменьшалась оптическая плотность раствора, происходило образование и быстрое оседание агрегатов частиц. Этот процесс усиливался с повышением количества добавленного ОМ. Эффективность флоккуляции также зависела от того, в какой последовательности дозируются реагенты – коагулирующий электролит и сополимер. Выявлено, что предварительное введение коагулирующего реагента вызывает более эффективную флоккуляцию (таблица 24).

Таким образом, предварительная агрегация коллоидных частиц позволяет получать крупные хлопья с повышенным содержанием твердой фазы. Однако, хотя процесс флоккуляции протекает достаточно быстро, остаточное значение мутности немного выше при добавлении коагулянта-органоглины.


Таблица 24

Влияние порядка дозирования коагулирующего реагента и сополимеров на эффективность флоккуляции

Коагулянт Порядокдозирования Концентрациясополимера Остаточнаямутность, %
ОМ ОМ+сополимер 70:30 0,5 % 10 %
ОМ сополимер 70:30+ОМ 0,5 % 28 %

а)

б)

Рис. 32: а- осадок суспензии каолина, б-осадок после обработки сополимером МАГ:АА (70:30)

3.6 Определение остаточного полимера в очищенной воде

Для очистки воды могут применяться полимеры, не действующие на человека, животных, фауну и флору водоемов, нетоксичные и малотоксичные.

Существенное влияние на токсичность оказывает количество непрореагировавшего мономера и реагентов используемых при синтезе. Токсичность этих веществ значительно превышает токсичность полимеров. Увеличение молекулярной массы и разветвленность полимера, затрудняющие его диффузию, приводят, по некоторым данным, к снижению токсичности.

Полиакриламид практически нетоксичное вещество [209], а акриламид сильнотоксичное вещество, действующее на центральную нервную систему и ткани дыхательных путей. ПДК для акриламида составляет 156 – 280 мг/кг.

В связи с этим перед использованием для очистки воды высокомолекулярные флоккулянты следует тщательно очищать от низкомолекулярных фракций. В данной работе полученные полимеры многократно переосаждали из воды в ацетон и очищали методом диализа.

При правильно подобранной дозе очищенного от низкомолекулярных веществ флоккулянта и условиях смешения в воде остаются только следы сополимера, который обладает низкой токсичностью по данным исследований с использованием биотестирования на личинках хирономид.

Для определения остаточного сополимера в очищенной воде использовали метод Буркета [210]. Метод основан на добавлении в исследуемую воду суспензии каолина; такое же количество добавляют в стандартные растворы с известным содержанием сополимера. Сопоставляя скорость осаждения или остаточное количество глины в осветленной воде, определяют количество находящегося в ней полимера. Метод позволяет устанавливать содержание высокомолекулярных флоккулянтов до 0,001 – 0,002 мг/л.

Данные, полученные этим методом, показали отсутствие в очищенной воде полимера, что свидетельствует о том, что в исследованных условиях сополимеры практически полностью взаимодействуют с коллоидными частицами. Использование исследованных реагентов для очистки воды, особенно в хозяйственно-питьевом водоснабжении, требует более углубленного изучения токсичности, а также тщательного контроля содержания мономеров.

Таким образом, сочетание в полученных сополимерах высокой бактерицидной активности (за счет содержания гуанидиновых групп) и флоккулирующих свойств позволило нам выявить новые эффективные гуанидинсодержащие биоцидные флоккулянты для очистки и обеззараживания воды.


Литература

1. Кабанов В.А., Топчиев Д.А. // Полимеризация ионизующихся мономеров. – М.: Наука, 1975.

2. Топчиев Д.А., Малкандуев Ю.А. // Радикальная полимеризация N,N – диалкилдиаллиламмоний галогенидов. – Нальчик: КБГУ, 1997.

3. Топчиев Д.А. // Дис. д-ра хим. Наук. – М.: ИНХС, 1973.

4. Кабанов В.А., Зубов В.П., Семчиков Ю.Д. Комплексно-радикальная полимеризация. – М.: Наука, 1987.

5. Butler G.B. // J. Polym. Sci. – 1960. – V.48. – № 1. – P.279.

6. Burtnett M.D., Butler G.B. // J. Org. Chem. – 1960. – V.25. – P.309.

7. Butler G.B. Cyclopolymerization and Cyclocopolymerization. – New York: Marsel Dekker, 1992.

8. Corfield G.C. // Chem. Soc. Rev. – 1972. – V.1. – № 3. – p.523.

9. Butler G.B. //Amer. Chem. Soc. Div., Polym. Chem. Preprints. – 1967. – V.8. – №1. – P.35.

10.Butler G.B., Kimura S. // J. Macromol. Sci. Chem. A. – 1971. – V.5. – №1. – p.181.

11.Butler G.B., Crawshow A., Miller W.L. // J. Am. Chem. Soc. – 1958. – V.80. – №14. – p.3165.

12.Julia M., Maumy M. // Bull. Soc. Chim. Fr. 1966. – V.1. – p.434.

13.Julia M. // Chem. Eng. News. – 1966. – V.41. – P.100.

14.Butler G.B. // J. Am. Chem. Soc. – 1967. – V.89. – P.35.

15.Richey H.G., Rothman A.M. // Tetrahedron Lett. . – 1968. – V.12. – P.1457.

16.Brace N.O. // J. Polym. Sci. . – A-1. – 1970. – V.8. – № 8. – P.2091.

17.Lancaster J.E., Baccei L., Panzer H.P. // J. Polym. Sci., Polym. Lett. Ed. – 1976. – V.14. – № 9. – P. 549.

18.Gibbs W.E., Barton J.M. / in book: Kinetics and Mechanism of Polymerization/ Ed. Hat G.E. – New York: Dekker, 1978, part 1, chapter 2.

19.Panzik H.L., Mulvaney J.E // J. Polym. Sci., Polym. Chem. Ed. –1972. – V.10. – № 12. – P.3469.

20.Uzushido K., Matsumoto A., Giwa M. // J. Polym. Sci., Polym. Chem. Ed. – 1978. – V.16. – № 5. – P.1081.

21.Gray T.F., Butler G.B. // J. Macromol. Sci. Chem. A. – 1975. – V9. – № 1. – P.45.

22.Matsumoto A., Tamura J., Jamawak M., Oiwa M. // J. Polym. Sci., Polym. Chem. Ed. –. 1979. – V.17. – № 5. – P.1419.

23.Johns S.R., Willing R.I., Middleton S., Ong A.K. // J. Macromol. Sci. Chem. A, 1979, V.10, № 5, p.875.

24.Ottenbreit R.M. // Ing. Engng. Chem. Prod. Res. Dev. 1980, V.19, p.520.

25.Bouman L.M., Cha C.I. // J. Polym. Sci. Polym. Lett. Ed. 1979, V.17, № 3, p.167.

26.Wandrey C. // Acta Polym. 1981, V.32, p. 177.

27.ТопчиевД.А., НажметдиноваГ.Т., КрапивинА.М., ШрейдерВ.А., КабановВ.А. // Высокомолек. соед. Б, 1982, Т.24Б № 6, с. 473.

28.Solomon D.H. // J. Macromol. Sci. Chem. A, 1975, V.9, № 1, p.97.

29.Hawthorne D.G., Johns S.R., Willing R.I. // Aust. J. Chem. 1976, V.29, № 9, p.315.

30.Johns S.R., Willing R.I., Middleton S., Ong A.K. // J. Macromol. Sci. Chem. A, 1979, V.10, № 5, p.875.

31.Hawthorne D.G., Johns S.R., Solomon D.H. Willing R.I. // Aust. J. Chem. 1979, V.3, № 215, p.1155.

32.Beckwith A.L., Ong A.K., Solomon D.H. // J. Macromol. Sci. Chem. A,. 1975, № 9, p.125.

33.Beckwith A.L., Hawthorne D.G., Solomon D.H. // Aust. J. Chem. 1976, V.29, № 9, p.995.

34.Solomon D.H. // J. Polym. Sci. Polym. Symposium. 1975, V.49, p.175.

35.Haman S.D., Pompe A., Solomon D.H., Spurling T.H. // Aust. J. Chem. 1976, V.29, № 9, p.1975.

36.Moad G., Solomon D.H. // Chemistry of free radical polymerization. Oxford: Pergamon, 1995.

37.ТопчиевД.А., БикашеваГ.Т., МартыненкоА.И., КапцовН.М., ГудковаЛ.А., КабановВ.А. // Высокомолек. соед. Б. 1980, Т.22, № 4, с.269.

38.Топчиев Д.А., Бикашева Г.Т., Мартыненко А.И., Капцов Н.М., Гудкова Л.А., Кабанов В.А. Полимерные амины: синтез мономеров, полимери-зация и пути использования в народном хозяйстве. М.: Наука, 1980.

39.Нажметдинова Г.Т. Дис. канд. хим. наук. М.: ИНХС, 1983.

40.Нажметдинова Г.Т., Шрейдер В.А., Топчиев Д.А., Кабанов В.А. // Изв. АН СССР. Сер.хим. 1984, Т.5, с.1024.

41.Топчиев Д.А., Нажметдинова Г.Т. // Высокомол. соед. А, 1983, Т. 25, №3, с.636.

42.Топчиев Д.А., Нажметдинова Г.Т., Кабанов В.А. // Изв. АН СССР. Сер. хим. 1989, Т.9, с.2146.

43.Babaev N.A., Martynenko A.I., Topchiev D.A., Kabanov V.A., Wandrey Ch., Hahn M., Jaeger W., Reinisch G. // Acta Polymerica. 1985, V.36, № 7, p.396.

44.ГолубковаН.А., МартыненкоА.И., БабаевН.А., НечаеваА.В., ЭфендиевА.А., ТопчиевД.А., КабановВ.А. // Изв. АНСССР, сер.хим., 1986, Т. 2, с.485.

45.Малкандуев Ю.А., Коршак Ю.В., Микитаев А.К, Топчиев Д.А., Кабанов В.А. // Материалы V Международного микросимпозиума «Радикальная полимеризация». Уфа, 1984, с.46.

46.Бабаев Н.А., Мартыненко А.И., Оппенгейм В.Д., Крапивин A.M., Эфендиев А.А., Топчиев Д.А. // Азерб. хим. журн. 1983, Т.4, с.89.

47.Мартыненко А.И., Вандрей К., Егер В., Хан М., Топчиев Д.А., Райниш Г., Кабанов В.А. // Материалы. V Международного микросимпозиума «Радикальная полимеризация». Уфа, 1984, с.74.

48. Четыркина Г.М., Соколова T.A., Котон М.М. // ВМС. I960. Т. 2. № 8. С. 1207-1212.

49. McCormiek C.L., Johnson СВ. //Polymer Mater. Sci. Eng. 1986. V.55. P.366-370; Chem. Abstr. 1986. V. 105.191686.

50. Morishima Y., Itoh Y., Nozakura S. //Makromol. Chem. 1981. Bd. 182. N11. S.3135-3147.

51. Iton Y., Morishima Y„ Nozakura S. //J. Polymer Sci. Polym. Chem. Ed. 1982. V. 20. N2. P. 467-476.

52. Kurenkov V.F., Myagchenkov V.A. //Acta Polymeiica. 1986. Bd. 37. N8, S. 517-524.

53. Ilavsky M. // Macromolecules. 1982. V. IS. N3. P. 782-788.