Смекни!
smekni.com

Радикальная сополимеризация акрилат- и метакрилатгуанидинов с виниловыми мономерами (стр. 17 из 20)

Для интенсификации процесса осаждения и повышения его эффективности применяется обработка воды коагулянтами. Несмотря на большую эффективность, технология очистки воды, основанная на применении коагулянтов, обладает рядом недостатков. Важнейший из них – малая прочность хлопьев, образующихся при коагуляции, не позволяющая работать при высоких скоростях потока воды и приводящая к выносу загрязнений из фильтующей загрузки [173]. При применении высокомолекулярных флоккулянтов устраняются основные недостатки коагулирования, повышается прочность хлопьев и ускоряется процесс их образования. Это позволяет увеличить эффективность осветления воды: сократить время отстаивания, повысить производительность осветлителей с взвешенным осадком, увеличить грязеемкость фильтров и контактных осветлителей.

В настоящее время сополимеры акриламида являются наиболее распространенными флоккулянтами. В связи с этим синтез и исследование флоккулирующих свойств новых сополимеров акриламида является, несомненно, актуальной задачей.

Обычно определение эффективности флоккулянтов по отношению к определенному виду загрязняющих воду веществ заключается в определении концентрации этих веществ в воде до и после обработки флоккулянтами.

Для оценки флоккулирующей активности полиэлектролитов необходимо использование модельных систем. В качестве моделей чаще всего используют водные суспензии каолина, охры и бентонита. Причем именно на суспензиях каолина описаны закономерности флоккулирующего действия большого числа катионных полиэлектролитов [174–177, 179–181]. В литературе также отмечается [182], что при концентрации каолина ~ 0,8 % и ниже частицы суспензии способны осаждаться в свободном режиме, и в этих условиях результаты экспериментов могут использоваться для изучения закономерностей флоккуляции.

Так как на флоккулирующую способность оказывает влияние величина заряда макромолекулы, то для исследования выбрали сополимеры с различной степенью содержания звеньев метакрилата гуанидина в макромолекулярной цепи. В качестве объекта сравнения использован полиакриламид. Флоккулирующую активность исследовали как в присутствии и отсутствии коагулянтов. В качестве коагулянта использовали органомодифицированную глину месторождения Герпегеж.

На рис. 27. показано влияние концентрации флоккулянтов разного состава на флоккулирующий эффект (F), который рассчитывали по формуле (11)

F = (n0 - n) / n , (11)

где n0 и n - соответственно оптическая плотность воды (определена турбидиметрическим методом) в отсутствие и в присутствии флоккулянта (и коагулянта).

Рис.27. Зависимость флоккулирующего эффекта F от концентрации и состава сополимеров 1- ПАА; 2- АГ-АА (20:80); 3- АГ-АА (40:60); 4- МАГ-АА (20:80); 5- МАГ-АА (40:60); 6- МАГ-АА (30:70)

Опыты, проведенные на одной партии природной воды (мутность 4,2 мг·л–1, цветность 48,5 градусов) показали увеличение флоккулирующего эффекта с ростом концентрации сополимера для всех флоккулянтов. Это следствие увеличения концентрации макромолекулярных мостиков, образованных при адсорбции макромолекул на поверхности частиц дисперсной фазы, что формировало крупные агрегаты из частиц дисперсной фазы и макромолекул и снижало устойчивость системы.

Также на рисунке видно, что образцы сополимера АА:МАГ (кривые 4,5,6) характеризуются большими величинами F по сравнению с ПАА (кривая 1). Сопоставление данных рис. 27. при постоянной концентрации флоккулянтов, свидетельствует о возрастании значений F при переходе к сополимерам с более высоким содержанием звеньев АГ и МАГ (кривые 2-6).

Из рис. 27 также следует, что отвечающий норме D = 0,7 (определен при n = 0,172 и λ = 364 нм, соответствующей мутности очищенной воды) достигается при меньших значениях концентрации сополимера АА: МАГ по сравнению с ПАА.

На рисунке видно, что максимальный флоккулирующий эффект наблюдается у сополимера состава 70:30. Очевидно, при этом реализуется оптимальное соотношение между плотностью заряда и гибкостью макромолекул, которое обеспечивает охват полимерными мостиками большего числа частиц дисперсной фазы, увеличению размера флоккул и D.

Видно, что образцы сополимеров МАГ-АА характеризуются большими величинами F по сравнению с АГ-АА, поэтому более подробно изучены флоккулирующие свойства сополимера МАГ-АА.

Несомненное влияние на процесс флоккуляции должен оказывать размер макромолекул или молекулярная масса полимера. Чем больше размер макромолекул, тем относительно больший процент сегментов адсорбированных макромолекул остается свободным и способным к адсорбции на других частицах. Большая макромолекула может связать большее число твердых частиц, образуя, таким образом, более крупные хлопья.

Для выяснения влияния молекулярной массы на степень флоккулирующего действия нами были исследованы образцы сополимеров с различными молекулярными массами. О величине молекулярной массы судили по характеристической вязкости растворов сополимеров.

Таблица 22

Влияние характеристической вязкости на процесс

осветления модельного раствора

СополимерАА:МАГ [η], дл/г концентрация сополимера,% Степень осветления
70:30 3,2 0,05 75,8
70:30 2,2 0,05 95,8
70:30 1,6 0,05 72,4
60:40 2,8 0,05 77,5
60:40 1,7 0,05 82,8
60:40 1,0 0,05 66,9

Рассматривая влияние молекулярной массы полиэлектролитов, было обнаружено, что наибольшие скорости и степени осветления суспензии получены с использованием сополимера, имеющего промежуточное значение молекулярной массы. Образцы с меньшей и с большей молекулярной массой проявляют несколько пониженную активность.

Некоторое снижение скорости осветления и степени осветления с ростом молекулярной массы вероятно связано с влиянием диффузионных ограничений, которые влияют на распределение макромолекул по частицам дисперсии. Особенно эффект снижения эффективности осветления проявляется для сополимера с наиболее высокими значениями характеристической вязкости. Хотя скорость осветления для этих сополимеров выше в очень широком диапазоне концентраций, что указывает на формирование крупных флоккул, степень осветления не превышает 76 %.

Видимо, в системе остается достаточно большое количество несфлоккулированных частиц. Вероятно, по мере возрастания размеров макромолекул усиливаются стерические явления и затрудняется подход частиц с адсорбированными макромолекулами к свободной поверхности других частиц.

Причины невозможности флоккуляции в случае больших размеров макромолекул объяснены в работе [199]. Авторы отмечают, что при большом различии в размерах коллоидных частиц и макромолекул полимера флоккуляция вообще становится невозможной вследствие малой вероятности образования полимерных мостиков, что наглядно показано на рис. 28.

а) б)

Рис. 28. Влияние соотношения размеров макромолекул и коллоидных частиц на процесс флоккуляции: а) макромолекулы намного больше коллоидных частиц; б) коллоидные частицы намного больше макромолекул; h- статистический размер макромолекул, d-размер коллоидных частиц.

Таким образом, для флоккуляции необходимо, чтобы молекулы полимера и твердые частицы приближались друг к другу на расстояние, достаточное для осуществления адсорбции и образования полимерных мостиков.


Рис. 29. Зависимость оптической плотности суспензии каолина от времени отстаивания и концентрации сополимера состава 70:30

Рис. 30. Зависимость оптической плотности суспензии каолина

от времени отстаивания и состава флоккулянта

Сочетание высокой скорости осветления и наибольшей степени осаждения частиц достигается при использовании сополимера акриламида с метакрилатом гуанидина состава 70:30. Так в интервале доз полиэлектролита 0,05 – 0,12 масс.% максимальная эффективность осаждения составляет 95 – 96%. Оптимальные концентрации полиэлектролитов на основе сополимеров АА: МАГ, исходя из турбидиметрических кривых, составляют 0,5 – 1,0%.

Для изучения механизма образования флоккул и осадков необходимо использование методов, непосредственно характеризующих кинетическую и агрегативную устойчивость флоккулированных дисперсий. К таким методам относятся определение кинетических параметров осаждения дисперсий.

На рис. 31 представлены кинетические кривые осветления суспензии каолина с концентрацией 0,5 масс. %.

Рис.31 . Кинетические кривые осветления суспензии каолина

при введении 0,01 (кривая 1), 0,03 (кривая 2)

и 0,05 масс. % сополимера АА: МАГ (70:30).

Из рис. 31 видно, что резкое снижение мутности суспензии каолина проходит в течение 100-150 с. Этот период времени соответствует осаждению основного количества сформированных в ходе предварительного перемешивания флоккул. Далее оптическая плотность надосадочной жидкости снижается с меньшей скоростью. После осаждения в течение 500 – 600 с остаточная мутность не изменяется.

Начальные скорости осветления суспензии каолина закономерно повышаются при увеличении концентрации полиэлектролита. Скорость осветления в присутствии полимерных добавок выше в 3 – 4 раза, чем скорость осветления в отсутствие полимеров. Наибольшие значения скорости достигаются при дозах 0,05-0,10 мг/г.

Полученные результаты по осаждению 0,5 % суспензии каолина недостаточны для анализа механизма снижения устойчивости при введении исследуемых сополимеров. Представлялось необходимым изучить процессы осаждения при более высокой концентрации дисперсной фазы (0,8%). Повышенное содержание дисперсной фазы позволяет не только оценивать скорость осаждения флоккул, но и определять динамические параметры образующегося осадка. В таблице 23 представлены зависимости объема осадка от времени в присутствии сополимера ААм: МАГ состава 70:30.