Из полученных результатов определяли мольное содержание сомономеров в сополимере, выраженное в мол.% (уравнения 5 и 6):
МПААм = [«1Н (М1)» : («1Н (М1)» + «1Н (М2)»)]×100% (5)
МПМАГ = [«1Н (М2)» : («1Н (М1)» + «1Н (М2)»)]×100% (6)
Как видно по кривым на рис. 8, при всех исходных мольных соотношениях сомономеров, сополимер обогащен звеньями акрилатного сомономера, причем, системе МАГ–АА свойственно большее обогащение сомономером МАГ, в отличие от системы АГ–АА. Это свидетельствует о большей реакционной способности МАГ в реакции радикальной сополимеризации и соответствует данным о параметрах реакционной способности акриловой (АК) и метакриловой (МАК) кислоты, имеющимися в литературе. Большая в сравнении с АГ реакционноспособность мономера МАГ обусловлена, возможно, большей делокализацией заряда карбоксильной группы в молекуле мономера, на что указывает смещение сигналов винильных протонов МАГ в более сильное поле по сравнению с АГ в ЯМР1Н спектрах.
Рис. 8. Зависимость состава образующихся сополимеров в системах:
АГ-АА (кривая 1) и МАГ-АА (кривая 2)
от состава исходного реакционного раствора
Меньшая реакционная способность акриламида по сравнению с АГ и МАГ может быть обусловлена со специфическим строением ионогенных мономеров, в которой имеется электростатическое притяжение между положительно заряженным атомом аммонийного азота и карбонильным атомом кислорода остатка метакриловой кислоты, электронная плотность у которого повышена (схема 7).
где R= H, СН3
Схема 7. Цвиттер-ионная делокализованная структура АГ и МАГ
Это притяжение обуславливает делокализацию отрицательного заряда по связям карбоксилат-аниона акриловой и метакриловой кислоты. Вследствие такой делокализации относительная стабильность соответствующих радикалов выше по сравнению с акриламидом. В случае МАГ наблюдается более высокая делокализация электронов по связи С-О– в метакрилатанионе по сравнению с АГ, что подтверждается большим обогащением сополимеров сомономером МАГ по сравнению с АГ.
Для определения констант сополимеризации в бинарной системе на практике используются различные методы, в основе которых лежит уравнение состава сополимера (7) [162]:
, (7)где [M1] и [M2] - концентрации мономеров в исходной смеси; r1 и r2 - константы сополимеризации, r1=k11/k12 и r2=k22/k21.
Одни методы могут применяться только к низким конверсиям мономера (до 8%), в них делается допущение, что на начальной стадии сополимеризации сохраняется постоянство величин М1 и М2. Поэтому соотношение скоростей расходования мономеров можно заменить соотношением мольных концентраций мономерных звеньев [m1] и [m2] в сополимере:
. (8)Это, например, метод «пересечения прямых» Майо-Льюиса [163], аналитический метод вычисления констант сополимеризации [164] и др.
Разработаны методы расчета констант сополимеризации, которые позволяют определять состав мономерной смеси или сополимера практически при любой конверсии мономеров, т.к. уравнения состава решаются в интегральной форме. Наиболее простым из них является метод Файнемана-Росса [165].
Так как нами исследовалась сополимеризация на малых степенях конверсии, то для расчета констант сополимеризации мы использовали аналитический метод.
Основное уравнение аналитического метода, предложенного А.И.Езриелевым, Е.Л.Брохиной и Е.С.Роскиным [210] имеет следующий вид:
, (9)где x = [M1]/[M2]; k = [m1][M1]/[m2][M2], а [mi] и [Mi] – концентрации i-ого компонента в полимере и исходной мономерной смеси. Уравнение (9) уже симметрично относительно величин r1 и r2, поэтому обе константы определяются с одинаковой точностью.
Это уравнение также удобно для вычисления констант сополимеризации методом наименьших квадратов (МНК). В последнем случае соответствующие уравнения имеют вид:
,где
; ; ; ,а n – число опытов.
Тогда выражение для относительных активностей мономеров записывается как:
иАналитический метод позволяет рассчитать среднеквадратичную ошибку определения констант сополимеризации
; ,где
дает среднеквадратичную ошибку опыта, т.е.Значения констант, рассчитанные этим методом, представлены в табл. 10.
Так как нами исследовалась сополимеризация на малых степенях конверсии, то для расчета констант сополимеризации использовали аналитический метод и значения констант, рассчитанные этим методом, представлены в табл. 10.
Таблица 10
Значение эффективных констант сополимеризации в системах
АГ(МАГ) (М1) –АА (М2)
([М]сум = 2 моль×л–1; [ПСА] = 5×10–3 моль×л–1; 60 °С, Н2О)
№ пп | Сополимеризационная система | r1 | r2 | r1´r2 |
1 | АГ-АА | 0,73 ± 0,07 | 0,27 ± 0,01 | 0,197 |
2 | МАГ-АА | 0,94 ± 0,05 | 0,77 ± 0,04 | 0,723 |
Приведенные в табл. 10 значения r1 < 1 и r2< 1 свидетельствуют о предпочтительном взаимодействии макрорадикалов с «чужим», чем со «своим» мономером в обеих сополимеризационных системах. Значения произведения r1×r2< 1 говорит о выраженной тенденции к чередованию в обеих сополимеризационных системах. Кроме того, r1 > r2, что подтверждает, что вероятность присоединения радикалов сомономеров к мономерной молекуле МАГ и АГ несколько выше, чем к молекуле АА. Близость относительных активностей к единице при сополимеризации МАГ–АА указывает на то, что скорости роста цепей в этой системе контролируется скоростью диффузии молекул мономеров в макромолекулярные клубки, причем скорости диффузии сомономеров мало отличаются между собой.
Таким образом, радикальная сополимеризация АА с АГ и МАГ позволяет получать сополимеры с высоким содержанием ионогенных групп.
Однако несмотря на то, что полученные нами значения относительных активностей указывают на более низкую реакционную способность мономера АА по сравнению с МАГ и АГ, изучение сополимеризации указанных сомономеров в водных растворах показало, что по мере увеличения концентрации ионогенных сомономеров АГ и МАГ в исходной реакционной значения характеристической вязкости снижаются.
Для понимания механизма сополимеризации АГ и МАГ с АА исследовали скорость данного процесса в водном растворе дилатометрическим методом. Для инициирования использовали персульфат аммония (ПСА).
Изучение кинетики в данных условиях показало, что реакция сополимеризации АГ и МАГ с АА протекает только в присутствии радикальных инициаторов и полностью подавляется при введении в реакционный раствор эффективного радикального ингибитора 2,2,6,6-тетраметил-4-оксилпиридил-1-оксила. Спонтанная реакция – полимеризация в отсутствии радикального инициатора – также не наблюдается.
Реакционные растворы были гомогенны во всем интервале составов, а образующиеся сополимеры хорошо растворялись в воде.
Показано, что в изучаемой реакции зависимость степени конверсии от продолжительности реакции в выбранных условиях (водная среда; суммарная концентрация сополимеров [М] = 2×моль×л–1; [ПСА] = 5×10–3 моль×л–1; 60 °С) характеризуется линейным участком кинетической кривой до конверсии 5-8 % .
Изучение кинетики сополимеризации показало, что с увеличением содержания ионогенного мономера в исходной мономерной смеси значения начальной скорости полимеризации v0 и [h] симбатно уменьшаются при сополимеризации АА с АГ и МАГ, причем для первой системы (при полимеризации с АГ) ход данной зависимости выражен более резко. Полученные результаты хорошо согласуются с известными данными, полученными в работах [6, 7] при изучении кинетики сополимеризации ДАДМАХ с АК и МАК в водных растворах. В этих системах установлено также, что скорость сополимеризации уменьшается с увеличением содержания ДАДМАХ в исходном реакционном растворе, причем для АК это увеличение выражено в большей степени, чем для МАК.