Методика 2. Для количественной оценки биоцидного действия гуанидинсодержащих полимеров пользовались методом диффузии в агар. Для проведения теста с диффузией чашки заполняли до определенной высоты агаризированной средой, содержащей суспензию тест-организма (E.coli). Затем в чашки вносили минимальные количества исследуемого полимера (1 мг для гуанидинсодержащих полимеров). Это количество вносили в лунки питательной среды. При положительной реакции во всех случаях после инкубации становится заметной зона подавления роста тест-организма (рис. 6). Диаметр этой зоны при соблюдении постоянных условий опыта (состав питательной среды, толщина слоя агара, плотность посева, время инкубации, температура и т. д.) пропорционален логарифму концентрации биоцидного полимера.
Глава III. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
3.1 Радикальная сополимеризация акрилат и метакрилатгуанидинов акриламидом в водных средах
Несмотря на важные мирные «профессии» полимеров АА, их использование в оборонной промышленности значительно ограничило доступность научной информации, поэтому до начала 70-х годов в литературе отсутствовали сведения о технологии производства указанных полимеров. В последние годы наряду с улучшением сырьевой базы создана научная основа для направленной разработки полимеров с заданными свойствами, разработаны перспективные методы синтеза полимеров – полимеризация и сополимеризация АА в концентрированных водных растворах и дисперсиях, получили развитие методы химической модификации полимеров. Сополимеры АА традиционно и широко используется во многих отраслях промышленности, в том числе, в качестве флоккулянтов [146-151], в нитроцеллюлозном, керамическом и силикатном производстве [153], при очистке сточных вод [146-155], для осаждения полимерных латексов [154-155], стабилизации взвесей и пищевых жидкостей [153].
В сельском хозяйстве они, а также полимерные комплексы на их основе, служат для улучшения структуры почв, для предотвращения ветровой эрозии [154], и данный перечень применений далеко не полный и составляет лишь небольшую часть хорошо известных и широко используемых полимерных материалов на основе сополимеров АА.
В настоящее время полимеры АА производят крупные фирмы США, Японии и развитых стран Европы. Они являются основными поставщиками полимеров на мировой рынок, а в России, Китае и ЮАР полимеры производят для внутреннего потребления. Производство полимеров АА продолжает неуклонно возрастать и к концу века достигнет 400 тыс. т. в год. Однако темпы роста производства не удовлетворяют потребностей, которые ежегодно возрастают на 8-10%. Поэтому актуальны разработка новых и совершенствование существующих перспективных методов синтеза ПАА, его производных и сополимеров АА.
Дальнейшее развитие исследований в этой области как в теоретическом, так и в практическом аспекте, несомненно, приведет к созданию новых и совершенствованию существующих перспективных методов синтеза полимеров – полимеризации и сополимеризации АА в концентрированных водных растворах и дисперсиях, развитию методов химической модификации ПАА, а также расширению сферы применения полимеров АА. В конечном итоге это будет способствовать удовлетворению растущих потребностей различных областей техники и технологии в интересных и нужных полимерах.
С учетом высокой биоцидной активности гуанидинсодержащих соединений, давно и успешно применяемых в медицине и в разных областях промышленности, представлялось необходимым изучить возможность синтеза новых сополимеров на основе гуанидинсодержащих мономеров акрилового ряда и АА. Поскольку естественно было бы ожидать, что вновь созданные сополимеры могут проявлять новые важные свойства и характеристики, не присущие исходным гомополимерам.
Вместе с ожидаемой практической значимостью указанных полимеров изучение кинетических особенностей протекания реакции радикальной сополимеризации, несомненно, актуально и в научном аспекте, прежде всего с позиции оценки реакционной способности синтезированных мономеров в рассматриваемых условиях.
Полученная в результате таких исследований информация необходима также для эффективного управления процессами получения сополимеров с заданным составом; распределением в них химических звеньев и молекулярно-массовыми характеристиками.
До проведения систематических кинетических исследований в рассматриваемых нами сополимеризационных системах были определены оптимальные условия осуществления данных реакций – водная среда; суммарная концентрация сополимеров [М] = 2 моль л–1; [ПСА] = 5×10–3 моль л–1; 60 °С.
Реакцию сополимеризации проводили по схеме 6 :
Изучение реакции сополимеризации в данных условиях показало, что реакционные растворы были гомогенны во всем интервале составов, а образующиеся сополимеры хорошо растворялись в воде.
Как известно [156], при гополимеризации АГ и МАГ наблюдается микрогетерогенность реакционного раствора при степенях превращения более 5%. Особенно, данное явление выражено для МАГ. Авторы [156] объясняют обнаруженную при полимеризации МАГ в Н2О гетерогенность реакционной среды конформационными превращениями ПМАГ, проявляющимися в сворачивании цепи - аналогично хорошо известным процессам денатурации ряда белков, а также синтетических полимеров – аналогов белка (например, поли N-винилпирролидона, ПВП), о чем подробно сообщалось в ряде работ [157-161]. Интересно, что для ПВП, как следует из этих работ, эффективным денатурирующим агентом являются низкомолекулярные соли гуанидина. Авторы полагают, что именно наличие двух аминогрупп в молекуле гуанидина, способных конкурировать с карбонильной группой С=О, блокируя дальнейшее взаимодействие ее с молекулами растворителя (вода), вызывает резкое сворачивание цепи ПВП. Так, в присутствии гуанидингидрохлорида характеристическая вязкость ПВП в спиртовых растворах заметно падает. Особенно резко меняется К[h]2, т.е. величина, характеризующая взаимодействие между полимером и молекулами растворителя, при этом молекулы ПВП, почти полностью растворимые в спирте, становятся нерастворимыми в присутствии гуанидингидрохлорида, что является следствием блокирования кислорода пирролидонового цикла молекулами гуанидинхлорида, приводящего к увеличению сил межмолекулярной ассоциации колец ПВП посредством гидрофобных взаимодействий. Моравец и другие авторы [157-159], подробно изучавшие влияние различных факторов на денатурацию белка, установили что различные соли гуанидина оказывают сильный денатурирующий эффект на белковые молекулы при введении их в раствор даже в небольших концентрациях ~1% (см. рис. 7).
Рис. 7. Изменение формы клубка ПАГ и ПМАГ в присутствии собственного мономера или гуанидингидрохлорида
Весьма примечательно, исходя из вышесказанного, что при сополимеризации МАГ с АА удается нивелировать «денатурирующее» действие гуанидинсодержащего мономера МАГ реакция сополимеризации до высоких степеней превращения (~60%) протекает в гомогенных условиях.
Это означает, что, как и в случае природных белковых молекул, введение звеньев «чужого» «нейтрального» мономера в сополимер (каким в нашем случае является АА), приводит к нарушению тактичности (изомерного состава) полимерной цепи, и чем больше количество таких “включений” в цепь ПМАГ, тем менее выражено влияние гуанидинсодержащего мономера на гетерогенность процесса полимеризации МАГ.
Таблица 8
Скорости сополимеризации АА с МАГ в водных растворах (рН » 7) а
№ п/п | Исходный составсополимераАА-МАГ | [M],моль л-1 | Инициатор,5´10-3 моль×л-1 | Vр´105,моль×л-1×с-1 | Микро-гетеро-генность |
1 | 50:50 | 1,0 | ПСА | 1,0 | – |
2 | 50:50 | 2,0 | ПСА | 26,9 | – |
3 | 50:50 | 0,5 | ПСА | 0,36 | – |
4 | 70:30 | 2,0 | ПСА | 5,7 | – |
5 | 70:30 | 1,0 | ПСА | 0,73 | – |
Состав сополимеров АА:АГ определяли по данным элементного анализа так как химические сдвиги протонов –СН2-СН= в ЯМР 1Н спектрах сомономеров близки и перекрываются.
Таблица 9
Данные элементного состава сополимеров АА:АГ
Исх. составАГ:АА | %С± 0,20 | %N± 0,40 | %H± 0,20 | в сополимере |
80:20 | 38,85 | 29,33 | 6,90 | 0,755 |
50:50 | 41,99 | 26,62 | 6,96 | 0,634 |
40:60 | 41,85 | 26,74 | 6,80 | 0,639 |
20:80 | 44,15 | 24,77 | 7,30 | 0,561 |
10:90 | 47,37 | 22,31 | 7,00 | 0,471 |
Для расчета содержания сомономеров использовали соотношение содержания азота и углерода в сополимере R = %N/%C, исходя из соображения, что
NСП = NАГ×x + NАА×(1 – x), (1)
CСП = CАГ×x + CАА×(1 – x), (2)
где NАГ и CАГ – содержание в АГ; NАА и CАА – содержание в АА; x – доля АГ в сополимере и (1 – x) – доля АА в сополимере.
Отсюда имеем уравнение:
. (3)Решая это уравнение и подставив значения для содержания азота и углерода в соответствующих сомономерах, получаем выражения для расчета х, т.е. доли АГ в сополимере.
Расчет состава сополимеров АА с МАГ проводили по данным ЯМР 1Н спектроскопии, используя интегральную интенсивность сигнала метильной группы сомономера МАГ, который проявляется в самом сильном поле и не перекрывается никакими другими сигналами. Треть его интегральной интенсивности будет равна величине условного протона для звена МАГ – «1Н (М2)». Протоны, относящиеся к сигналам CH2-групп цепи сополимера, проявляются для обоих сомономеров вместе в области химических сдвигов 1,5-1,8, поэтому для определения условного протона звена АА «1Н (М1)» из общей интегральной интенсивности этих протонов (I) вычитали вклад двух протонов звена МАГ и оставшуюся величину делили на 2 (уравнение (4)):