Смекни!
smekni.com

Разработка интерактивных моделей микромира и методика их использования при изучении школьного курса (стр. 13 из 14)

Молекула NO также как и молекула NO2 содержит нечетное число электронов, поэтому один электрон в ней остается неспаренным.

Оксид азота (II) малорастворим в воде и не реагирует с растворами кислот и щелочей. У отверстия цилиндра, наполненный этим газом, виден бурый “дым” – это образуется оксид азота (IV)(Показ видеофрагмента окисления NO):

2NO + O2 = 2NO2.

Бурый дым (так называемый «лисий хвост») иногда тянется из труб заводов по производству азотной кислоты; это значит, что в атмосферу выбрасываются оксиды азота.

Оксиды азота NO и NO2, образующиеся при работе двигателей внутреннего сгорания, попадают в воздух, сильно загрязняя окружающую среду и наряду с сернистым газом вызывают кислотные дожди(учитель показывает фотографию бронзовых статуй, подверженных коррозии).

Проблемная ситуация: NO не образует димера в отличие от NO2, хотя также является радикалом, как вы думаете почему? одно из объяснений этого явления лежит в строении молекул. Для ответа на этот вопрос рассмотрите модели молекул этих двух веществ (каждый ученик рассматривает модели молекул индивидуально). Ответ: Рассмотрев модели молекул, видно, что молекула NO- линейная, значит атом азота находится в sp – гибридном состоянии, а молекула NO2 уголковая, атом азота находится уже в sp2- гибридном состоянии, а ведь sp2- орбиталь больше sp – орбитали, а значит атомы азота в NO2 скрепляются лучше, чем в NO.

Оксид азота (I)N2O называют«веселящим газом» из-за слабого наркотического действия (учитель показывает видеофрагмент получения оксида азота I). Вдыхание небольших количеств этого вещества вызывает судорожный смех. «Веселящий газ» раньше использовали в медицине для наркоза. Сейчас им заполняют аэрозольные упаковки с пищевыми продуктами – взбитыми сливками, кремами.

3.Закрепление (рефлексивно – оценочный этап)

Для закрепления полученных знаний, учитель совместно с классом решает несколько заданий на тему «оксиды азота» в режиме «тренажер». Вопросы транслируются проектором, учащиеся отвечают, учитель вводит ответы.

4.Домашнее задание: Пар 42.

3.4 Результаты апробации

Апробация проводилась среди учащихся 9 классов школы №4 г. Калуги. Всего в педагогическом эксперименте участвовало 46 учащихся. Целью проведения апробации являлось выявление эффективности использования компьютерных моделей в процессе обучения химии и определение возможности применения данной программы в школьном курсе химии.

Для этого были выбраны два 9 класса, в одном из которых я вел уроки(23 человека), используя компьютерную поддержку(компьютерные модели), в другом – проводил уроки, не используя компьютера(23 человек). По итогам работы были проведены две проверочные работы по темам «оксиды азота» и «Фосфор», в результате которых выявлено:

С использованием компьютерной поддержки при изучении темы «Оксиды азота» получились следующие результаты:13% двоек, 26%троек, 48%четверок, 13% пятерок, без использования компьютерной поддержки(второй класс): 17% двоек, 36%троек, 30%четверок, 17%пятерок.



Рис 1. Результаты, полученные при проведении проверочной работы по теме «Оксиды азота».

При проведении проверочной работы по теме «фосфор» получены следующие результаты: С использованием компьютерной поддержки: 17%двоек, 31%троек, 43% четверок, 9%пятерок; без использования: 17%двоек, 48%троек, 31%четверок, 4% пятерок.


Рис 2. Результаты, полученные при проведении проверочной работы по теме «фосфор».

Высчитав общий процент оценок, было получено, что с использованием компьютерных моделей общий процент 4 и 5 составил 57%, а в случае без использования компьютеров составил 41%.



Рис 3 Общий процент оценок, выставленных при проведении проверочных работ

Это говорит о том, что использование интерактивных компьютерных программ делает процесс обучения более эффективным в сочетании с традиционным подходом в обучении.

Помимо проверочных работ было проведено миниисследование на предмет выявления приоритетных направлений использования компьютерных моделей. Учащимся предлагалось выбрать варианты использования компьютерных моделей в образовательном процессе. Всего протестировано 23 человека.

19 человек(83%) считают, что компьютерные модели необходимо использовать при объяснении нового материала, 12 человек(52%) - при обобщении и повторении материала на уроке, 8 человек(35%) - при самостоятельном повторении материала, 7человек(30%) - при самостоятельном изучении нового материала.

На вопрос «Повышает ли ИКМ скорость усвоения материала» 13 человек (56%)ответило, что повышает, видимо использование компьютерных моделей повышает интерес к обучению химии у учащихся. А 15 учеников(65%) за продолжение создания программ, содержащих ИКМ.


Рис 4. Общие результаты проведенного миниисследования.

Из проведенного анкетирования видно, что меньше всего учеников считают целесообразным использовать компьютерные модели при самостоятельном изучении нового материала, поэтому важно продолжать разработку такого рода программ, создавая компьютерные модели интересного содержания, для стимулирования учащихся к познавательной деятельности.

Выводы

1. Проведен анализ учебно-методической литературы и нескольких электронных изданий на предмет использования интерактивных компьютерных моделей в образовательном процессе, который показал, что вопросы компьютеризации обучения рассматриваются достаточно широко, однако вопрос создания и применения компьютерных моделей изучении недостаточно, плохо разрабатывается структура интерактивных компьютерных моделей, да и методические рекомендации по использованию интерактивных компьютерных моделей большая редкость. Выявлено, что предлагается много моделирующих программ, но, к сожалению, не все из них качественно составлены и часто имеют множество недочетов, а иногда даже и ошибок.

2. Разработан сценарий интерактивной компьютерной модели для изучения темы «Химическая связь и метод Валентных Систем». Предложены содержание и структура данной программы.

3. Предложены сценарии уроков и методические рекомендации по их проведению при изучении тем: «алканы. Строение, изомерия, номенклатура», «алкены». Строение, изомерия, номенклатура», а также тем «оксиды азота» и «фосфор».

4. Проведена апробация элементов данной методики, результаты которой говорят об актуальности разработок интерактивных компьютерных моделей и внедрения их в учебный процесс. На основании полученных результатов следует продолжать работу над созданием и совершенствованием интерактивных компьютерных моделей и методикой их использования в обучении химии.

Литература

1. Ахлебинин А.К., Лазыкина Л.Г., Лихачев В.Н., Нифантьев Э. Е. Демонстрационный эксперимент на мультимедийном компьютере. // Химия в школе.- 1999.- № 5 – с. 56-60.

2. Ахлебинин А.К., Ахлебинина Т.В., Горбач М.Г., Нифантьев Э.Е. Подсказка как способ активации мыслительной деятельности учащихся // Информатика и образование. – 2000. - № 3. – с.53-57.

3. Барахсанова П.И., Маркова А.С., Григорьева А.А. Роль дистанционного обучения в создании образовательного пространства // Информатика и образование. – 2000., № 9 – стр. 37-39.

4. Безрукова Н.П., Сыромятников А.А., Безруков А.А. Использование компьютерных технологий при изучении химической связи. // Химия в школе.- 2001.- №2- с. 41-44.

5. Высоцкий И.Р., Данилова Н.П. Компьютер на уроке // Информатика и образование.- 1999.- №7 – с. 81 – 84.

6. Высоцкий И.Р. Компьютер в образовании. // Информатика и образование.- 2000.- №1 – с.86 – 87.

7. Гара Н.Н., Сергеева Т.А., Чунихина Л.Л. Всероссийский семинар «Компьютер в обучении химии» // Химия в школе.-1990.- № 1- с.76-79.

8. Габриелян О.С., Остроумов И.Г., Ахлебинин А.К. Моделирование // «Химия» приложение к газете «1 сентября».- 2006. № 3 – стр. 5 – 7.

9. Демушкин А.С., Кириллов А.И., Сливина Н.А., Чубров Е.В. Компьютерные обучающие программы // Информатика и образование.- 1995.- № 3.- с.15 – 22.

10. Добротин Д.Ю., Журин А.А. Интернет в обучении химии. // Химия в школе.- 2001.- № 7- с.52-55.

11. Жильцова О.А., Самоненко Ю.А., Организация компьютерной поддержки // Химия в школе.- 2001.-№ 4- с.56-59.

12. Зазнобина П.С. Медиаобразование при обучении химии // Химия в школе.- 1995. -№ 2 – с. 3-7.

13. Калина О.Г., Павлова Л.С.. Программа Hyperchem на уроках химии. // Информатика и образование.- 2001.- № 8. – с. 92 – 95

14. Кречетников К.Г. Особенности проектирования интерфейса средств обучения // Информатика и образование.- 2002.-№ 4 – с. 65-73

15. Кривошеев А.О., Фомин С.С. Конкурс «Электронный учебник» // Компьютерные технологии в высшем образовании/ М.: Изд-во МГУ,1994.

16. Кузнецова Н.Е., Герус С.А.. Формирование обобщенных умений на основе алгоритмизации и компьютеризации обучения.// Химия в школе.- 2002.- № 5 -с.16-20

17. Купатадзе К.Т., Сванидзе А. С. Об использовании компьютера в учебном процессе // Химия в школе.- 2001.- № 7- с.55-56.

18. Курдюмова Т.Н. Компьютерные технологии в обучении химии // Информатика и образование. -2000.- № 8- с. 35-38.

19. Кюршунов А.С. Дидактические особенности разработки интерактивных компьютерных моделей. // Информатика и образование. - 2005.- № 2 – с. 78 – 81.

20. Левченко И.В. Реализация структурных элементов урока при использовании компьютера // Информатика и образование. – 2002.-№ 3. – с.32-35.