Смекни!
smekni.com

Топологія геометрична та коливальна структура фулеренів Механізм утворення фулеренів (стр. 3 из 11)

Зважаючи на розглянуті результати вимірювань рухливості катіонів, Хіт запропонував інший механізм, в якому як проміжні кластери, які потім перетворяться у фулерени, виступають частинки розміром 30-58 атомів із замкнутим каркасом. Модель одержала назву "Fullereпe Rоаd". Зростання кластерів, згідно цієї моделі відбувається так само, як і в моделі "Репtаgоп Rоаd", тобто за рахунок приєднання С2. Оскільки частинки вказаних розмірів не можуть підкорятися правилу ізольованих пентагонів, то вони реакційніші, ніж кластери з великим числом атомів. Межі між суміжними пентагонами якраз і є тими реакційними центрами, до яких відбувається приєднання груп С2. Як можливий механізм, по якому згодом відбувається реструктуризація в ізомери з меншим числом суміжних пентагонів, притягується відоме перегрупування Стоуна-Вейлса (див. Д. Б, рис.3).

Модифікація Керла, в якій приєднувані невеликі лінійні групи замінюються на крупніші кільця (див. Д. Б, рис.3), цілком підходить і до моделі “Fullerene Road”. Залишається, правда, неясним, яким чином з'являються самі замкнуті попередники фулеренів.

Ті ж самі експерименти з трубою дрейфу проливають світло на цю проблему, даючи переконливі доводи на користь того, що для задовільного пояснення утворення фулеренів зовсім немає необхідності привертати у якості попередників ні чашоподібні, ні замкнуті кластери. Як випливає з дослідів, кластери, які накопичили більше 30 атомів вуглецю і мають форму одиночного кільця або бі- і тріциклічну структуру, легко перетворяться у фулерени, якщо у внутрішні міри свободи закачується достатня енергія (говорять також, що відбувається «відпал» кластерів). Цей висновок - другий найважливіший результат застосування методу іонної хроматографії, робить зрозумілішим найважчий етап синтезу фулеренів - поява частинок із замкнутим вуглецевим каркасом. У самій справі, не є великою складністю пояснити, яким чином виникають плоскі або об'ємні структури з двома або трьома великими циклами. Спочатку лінійні молекули ростуть за рахунок приєднання чергових атомів. Після досягнення певних розмірів вони при коливальному збудженні (під впливом теплового руху з високою температурою) легко можуть замкнутися в кільце. Кільця, реагуючи між собою, утворюють мультициклічні структури. Тому, якщо знайдено пояснення наступному етапу - переходу до кластерів із замкнутою оболонкою, то і весь ланцюг реакцій, який веде до фулеренів, стає зрозумілим.

Розглянемо докладніше, що відбувається, коли пучок катіонів Сn+ з тією або іншою заданою кінетичною енергією частинок стикається з молекулами буферного газу. Дані на мал. 2.(Д.А) одержані при невеликій енергії налітаючих частинок 2-20 еВ, недостатньої для такого збудження кластерів, яке може привести до їх дисоціації або внутрішньої перебудови. Таким чином, розподіл кластерів за розмірами і структурою в цьому випадку відповідає тому, яке виникає «природним» чином у вуглецевій плазмі при лазерній дії. У цих умовах час, який кластери проводять при достатніх для відпалу температурі і тиску, досить мало. Унаслідок швидкого охолоджування при розширенні плазми кластерний склад (у тому числі і ізомерний) продуктів «заморожується» в мета-стабільному стані. В умовах дугового синтезу тривалість даного періоду, очевидно, значно більше.

Щоб побачити, як мінявся б склад вуглецевої пари при тривалішому відпалі, кінетична енергія катіонів була збільшена до 50 еВ, а потім до 150 еВ. Візьмемо для прикладу катіони з числом атомів вуглецю в діапазоні 30-40. Саме при таких розмірах кластерів вперше з'являються фулерени.

На мал. 4(Д.Б) показані хроматограми, одержані при налаштуванні мас-анализатора на масові числа 39 і 40 відповідно. Реєстровані детектором катіони С39+ і С40+ - це кластери, які «вижили» при зіткненнях, тобто не зазнали дисоціації. Характер розподілу ізомерів за часом дрейфу при енергії 50 еВ мало відрізняється від такого при енергії 2-3 еВ і свідчить про те, що більшість кластерів є плоскими структурами з одним, двома або трьома замкнутими циклами. У кластерів з одним кільцем час дрейфу найбільший. Є також невелика кількість тривимірних кільцевих структур (час дрейфу ~160 мкс) і кластерів із замкнутою кліткою, тобто фулеренів (~120 мкс). Схожі результати можна спостерігати і для катіонів С40+, серед яких фулеренів значно більше. Фуллерени С39+ і С40+ -це, зрозуміло, «неправильні» фулерени, що не підкоряються правилу ізольованих пентагонів. Існування «сьогодення» фулеренів в даному діапазоні мас у принципі неможливе.

Хроматограми, зняті при енергії 150 еВ, однозначно показують: переважна більшість бі- і тріциклічних кластерів реструктуруються в частинки з одним кільцем. Фулерени і тривимірні циклічні кластери не зазнають помітних змін під дією відпалу. Очевидно, що при заданому числі атомів моноциклічні кластери найбільш стабільні серед плоских структур. Найважливішим є той факт, що при підвищенні енергії значна частина початкових катіонів С39+ і С40+ зазнає зіштовхувальної дисоціації і перетворюється на фуллерени з меншим числом атомів, викидаючи при цьому один або невелику групу атомів вуглецю (див. схему на мал. 5 Д.В). Це ясно видно з хроматограм для іонів С38+ і С36+, що показують, що ці іони є фактично на 100% фулерени. З'являються вони тільки при великих енергіях зіткнень. Реєстрація іонів з даними масовими числами відбувається при настройці на них ще одного (квадрупольного) мас-аналізатора, що стоїть в кінці труби дрейфу.

Збільшення внутрішньої енергії кластера в результаті зіткнення, яке приводить до фулерену, вельми велика. У літературі посилаються на величину 5-20 еВ, маючи на увазі початкову кінетичну енергію іонів, що вводяться, 150 еВ і вважаючи, що тільки частина її йде на «розігрівання» кластера. Не можна достовірно сказати, яким чином вона розподіляється по внутрішніх мірах свободи. Як відомо, число коливальних ступеней свободи n-атомной молекули рівне 3п - 6. Якщо вважати, що вся енергія переходить в коливальну, то для С40+ на кожну моду припадає приблизно 0.18 еВ, що відповідає температурі 2000 К; Для С36+ 0.2 еВ і 2300 К. Все це відноситься до збудженої частинки, що ще не прийняла форми фулерену. Згідно з деякими розрахунковими даними, енергія, яка вивільняється при перегрупуванні кластера С36+ з біциклічної структури в структуру фуллерена, рівна ~9 еВ. Якщо ця енергія додається до одержаної при зіткненні, то коливальна температура стає ~3300 К; що вельми близько до температури плавлення графіту. «Розігріта» до такої температури частинка, скажімо, С38+, потім охолоджується в результаті відщеплення фрагмента С2. Енергія, яка вивільняється в аналогічному процесі для кластера з тричленним циклом, що приводить до утворення фулерена С60, складає ~45 еВ.

Таким чином, зіткнення, енергія яких достатня для подолання порогу ізомеризації, ініціюють швидкий розрив зв'язків в плоских кластерах досить великого розміру з подальшою перебудовою в структуру фулерена. Процес формування фулеренів починається з кластера С33+, який дає фулерен С30+ з втратою групи С3. Теоретичні розрахунки підтверджують: фулерени саме такої величини вперше стають стійкішими, ніж відповідні плоскі циклічні кластери. Із зростанням маси кластерів процес утворення фулеренів сильно прискорюється, що видно вже з порівняння хроматограм для С39+ і С40+. Це дає підстави для висновку: активаційний бар'єр, пов'язаний з перетворенням плоских кластерів у фулерени, швидко падає із збільшенням маси, що узгоджується із зростанням стабільності фулеренів в порівнянні з їх попередниками, передбаченим теоретично. За оцінками, енергія активації, необхідна для трансформації поліциклічних кластерів розміром 50-70 атомів у фулерені, менше, ніж типова енергія одинарного σ-зв’зку С-С. Автори знайшли, що кластери С58+ реструктуруються у фулерен майже також легко, як і С60+. Дещо пізніше в одній з груп, що займається іонною хроматографією, поставлені ще тонші експерименти, в яких дрейфуючі катіони піддавалися додатковій лазерній дії вже в трубі дрейфу, щоб ініціювати подальші перетворення. Синхронізація лазерного імпульсу з певним часом дрейфу дозволяє впливати випромінюванням на конкретні ізомери і відокремити процеси, що відбуваються з ними, від інших. Встановлено: чим більше циклів має кластер, тим легше він трансформуєтся у фулерен. Різниця в швидкості процесу для кластерів, що містять чотири або три кільця, в порівнянні з біциклічними, вельми помітна. Прості ж кільця схильні, швидше, до фрагментації, чим до реорганізації.

Ще одним доводом на користь того, що проміжні продукти − попередники фулеренів − не обов'язково повинні виглядати як гостьові фрагменти цих молекул, є експериментальні дані, які показують, що фулерени легко утворюються шляхом коалесценциєю («злипанням») кластерів середнього розміру. Такі дані одержані в дослідах з лазерною десорбцією циклічних вуглецевих оксидів наступного вигляду(див Д.В, рис. 6).