Вся процедура обработки экспериментальных данных может быть разделена на два этапа. На первом производится первичная обработка сведений, полученных при проведении эксперимента по химическому равновесию, с целью определения значений констант равновесия. К этому же этапу относится и статистическая обработка данных, позволяющая провести выбраковку ошибочных сведений.
На втором этапе полученные значения констант равновесия подвергаются анализу c целью непосредственного определения роли энтальпийного и энтропийного факторов в равновесии позиционной изомеризации изучаемых веществ и выработки подходов к прогнозированию равновесия превращений родственных структур.
4.1. Первичная обработка экспериментальных данных
Первичная обработка результатов исследования химического равновесия основана на рекомендациях [38, 101-104] и включала в себя следующее.
Расчет отношений концентраций компонентов, характеризующих константы равновесия изучаемых реакций.
Анализ изученных отношений с целью установления момента достижения равновесия и включения в обработку только равновесных данных.
2. Исключение грубых ошибок внутри серии определений константы равновесия. Для каждой температуры исследования сериями считали опыты, различающиеся между собой либо составом исходной смеси, либо количеством катализатора. Отбраковку промахов в сериях проводили с использованием критерия – наибольшего по абсолютной величине нормированного выборочного отклонения:
Процентные точки наибольшего по абсолютной величине нормированного выборочного отклонения заимствованы из работы [102].
3. Расчет среднего арифметического значения константы равновесия и дисперсии воспроизводимости в сериях после исключения грубых ошибок:
Сопоставление дисперсий воспроизводимости констант равновесия в сериях при одной температуре. Эта стадия дисперсионного анализа является весьма полезной, так как позволяет контролировать ошибки воспроизводимости, возникающие на всех этапах получения экспериментальной информации. Проверку равенства дисперсий воспроизводимости в сериях выполняли по двум критериям: Фишера – если число серий равнялось двум и Бартлетта – когда количество серий превышало два [38, 102]. Если нуль-гипотеза выполнялась, то дисперсию воспроизводимости вычисляли по следующей формуле:
Для всех изученных в данной работе превращений дисперсии воспроизводимости констант равновесия в сериях были однородны.
Расчет среднего значения константы равновесия
Проверку значимости расхождения средних значений констант равновесия в сериях. Для этого вычисляли дисперсию
где m – число серий, wj – вес серии j, равный числу определений nj.
Величина
с числом степеней свободы
Для всех исследованных реакций расхождения между серийными константами равновесия не превышали дисперсии воспроизводимости, что указывало на отсутствие систематических отклонений.
4.2. Анализ равновесных данных
Полученные значения констант равновесия анализировались с помощью подхода, основанного на последовательном исключении из исходной жидкофазной константы равновесия вкладов, обусловленных:
· межмолекулярными взаимодействиями,
· симметрией внешнего вращения молекул,
· вращением молекулы как целого,
· смешением конформеров,
· колебательным движением,
· вращением отдельных групп в молекулах реагентов.
Результатом подобного исключения является переход к газофазной константе равновесия , рассчитываемой следующим образом:
=exp(lnKps- DS(or)/R - DS(mix)/R - DS(vib)/R - DS(ir)/R),
где
Анализ констант равновесия проводился следующим образом.
Путем исключения вклада на симметрию молекул находилась бессимметрийная жидкофазная константа реакции
Путем снятия вклада на межмолекулярные взаимодействия рассчитывалась бессимметрийная газофазная константа равновесия реакции
Остальные вклады требовали привлечения информации о геометрии, энергетических характеристиках молекул и частотах колебательного спектра. Для получения подобной информации нами использовались различные расчетные методы. Окончательная обработка информации и вычисление энтропийных вкладов выполнялась с помощью программы Entropy, описание которой будет приведено в п. 4.3.
Геометрия молекулы оптимизировалась методом молекулярной механики (силовое поле MMX на базе силового поля Аллинджера MM2) программой PCModel 3.2. Для оптимизации молекул бифенилов использовалась PCModel 4.0, обладающая большими возможностями при расчетах в p-электронных системах. Выходной информацией являлись оптимизированная геометрия молекулы для наиболее устойчивого конформера и информация об изменении энергии молекулы при вращении каждого из волчков, сохраняемые в отдельных файлах. Для формирования потенциальной кривой барьера вращения каждого из волчков использовались значения потенциальной энергии молекулы при изменении двугранного угла между избранными связями волчка и остова от 0о до 360о с шагом 10о, при этом на каждом фиксированном значении угла проводилась оптимизация геометрии молекулы.
На основании сведений о геометрии молекулы рассчитывалось произведение главных центральных моментов инерции IAIBIC , являющееся свободным членом кубического уравнения
где