На сучасних збагачувальних фабриках у відсаджувальних машинах збагачується дрібне вугілля, а крупні класи збагачуються тільки в важкосередовищних сепараторах. Іноді разом з дрібним вугіллям на відсаджувальні машини поступає дроблений промпродукт важкосередовищних сепараторів.
Розділення гірських порід за густиною на концентраційному столі і в мийному жолобі основане на закономірностях руху зерен в струмені води, що тече по похилій площині.
Збагачення вугілля в мийних жолобах відбувається в порівняно глибокому потоку води що тече по похилому жолобу. Внаслідок складної взаємодії суміші частинок різної крупності, густини і форм з вихровими потоками води відбувається розшарування матеріалу внаслідок чого у верхніх шарах потоку концентруються переважно легкі, а в нижніх важкі фракції. Важка фракція розвантажується через донні отвори жолоба, а легка виноситься з жолоба з потоком води.
Концентраційний стіл являє собою малонахилену в поперечному напрямі поверхню, що гойдається із заданими амплітудою і частотою. Завдяки встановленим на поверхні нарифленням і течії води створюється специфічніумови для стратифікації матеріалу середовище розділення. Розділення гірських порід на концентраційному столі відбувається під дією комплексу механічних і гідродинамічних сил внаслідок чого на бічній і торцевій розвантажувальних сторонах деки утворюється так зване віяло продуктів різної густини, які спеціально встановленими відсікачами спрямовується у збірники концентрату, промпродукту і відходів. Основною перевагою концентраційного столу перед апаратами інших типів є можливість його використання для досить ефективного виділення піриту з високосірчистого вугілля.
Протитечна водна сепарація в шнекових і крутонахилених сепараторах здійснюється в закритих каналах, оснащених системою однотипних елементів, обтічних потоків, обумовлюючих утворення системи повторних течій і вихорів, завдяки чому початковий (вихідний) матеріал розділяється за густиною, що більша густини розділювального середовища.
Протитечійні сепаратори мають невисоку ефективність розділення, але завдяки простоті, надійності роботи, низьким капітальним і експлуатаційним витратам знаходять застосування для збагачення низькосортного палива, перезбагачування старих відвалів і ін.
Традиційні мокрі процеси збагачення зі складним водношламовим господарством, пов'язані з споживанням і втратами води, незважаючи на високу ефективність розділення, залишаються складними і дорогими . Сухе збагачення вугілля може значно спростити технологію переробки, знизити собівартість продуктів і вирішити ряд питань складування і утилізації відходів.
Пневматичне збагачення здійснюється на перфорованій робочій поверхні машин під дією постійного або пульсуючого повітряного потоку, іноді в комбінації з механічним струшуванням робочої поверхні. При цьому матеріал розпушується і розшаровується за густиною і крупністю. Матеріал розділяється на продукти збагачення внаслідок переміщення шарів частинок, що утворюються на робочій поверхні. При цьому матеріал розпушується і розшаровується за густиною і крупністю. Матеріал розділяється на продукти збагачення внаслідок переміщення шарів частинок, що утворюються на робочій поверхні (деці) в одному або декількох напрямах.
Характер впливу робочої поверхні і повітряного потоку на збагачений матеріал, принципи розділення і способи розвантаження продуктів визначаються конструкцією машин, які ділять на пневматичні сепаратори і пневматичні відсаджувальні машини.
Пневматичне збагачення набуло деякого поширення головним чином при збагаченні бурого і кам'яного енергетичного вугілля в районах з суворими кліматичними умовами або обмеженими водними ресурсами.
Збагачення в аеросуспензіях основане на використанні явища псевдозрідження тонкодисперсних сипких матеріалів під дією висхідного повітряного потоку. Аеросуспензії, що утворюються при цьому (киплячий шар) використовуються як сухе важке середовище для гравітаційного розділення частинок вугілля за густиною. Аеросуспензії в принципі подібні водним суспензіям, що підтверджено дослідженнями їх фізико-хімічних характеристик і експериментальними даними по розшаруванню сумішей мінеральних частинок різної густини і крупності. Як обважнювачі в аеросуспензіях можуть бути використані різні порошкоподібні сипкі матеріали: кварц (пісок), тонкодисперсні магнетит, галеніт, апатит, гранульований феросиліцій і ін.
Флотація вугілля відбувається внаслідок так званого акту флотації прилипання частинок до бульбашок повітря. У основі цього методу лежать фізико-хімічні явища, що протікають на границі розділу трьох фаз - твердої, рідкої і газоподібної, найбільш важливими з яких є змочуваність поверхні твердої фази і зміна її властивостей при сорбції флотореагентів.
Вугілля є природногідрофобною речовиною, однак практично його флотація здійснюється із застосуванням флотореагентів, що підвищують флотуємість вугільних шламів. При флотації вугілля впливають, як правило, тільки на компонент, що флотується (вугілля). Флотаційному збагаченню підлягають вугільні шлами, кількість яких досягає 20 % від вугілля, що переробляється.
Велика різноманітність фізичних і фізико-хімічні властивостей гірських порід і вугілля зокрема, дозволяє застосовувати для розділення гірничої маси практично всі відомі методи збагачення, основані на різниці в електропровідності, магнітних і термомагнітних поверхневих властивостях та інші . Такі методи і процеси не знайшли поки промислового застосування через велику складність, низьку ефективність, високу вартість і інші причини. Найбільш перспективними для збагачення вугілля вважають процеси магнітогідродинамічного, магнитогідростатичного, каскадно-адгезійного, селективно-флокуляційного розділення і масляної грануляції.
У основі методу масляної грануляції лежить різниця в змочуванності вуглеводнями вугілля і породних домішок, внаслідок чого частинки вугілля спочатку покриваються масляною плівкою, а потім притубулентній (як правило) ажітації гідгосуміші злипаються в гранули, а мінеральні частинки залишаються зваженими у воді. Технологія реалізації грануляції полягає в перемішіванні вугільного шламу з відносно великою (6-12 %) кількістю вуглеводнів (нафтопродукти, мазут, масла) у водному середовищі.
Масляна грануляція, може бути використана як високоефективний метод збагачення тонких класів високозольного вугілля і антрацитів, інтенсифікації процесу незводнення дрібних концентратів, підготовки бурого вугілля до гідротранспорту, утилізації твердих осадів мулонакопичувачів збагачувальних фабрик, а також як метод підготовки вугілля до гідрогінезації.
ЛІТЕРАТУРA
1. Саранчук В.И., Айруни А.Т., Ковалев К.Е. Надмолекулярная организация, структура и свойства углей.- К.: Наукова думка.
2. Саранчук В.И., Бутузова Л.Ф., Минкова В.Н. Термохимическая деструкция бурых углей.- К.: Наукова думка, 1984.
3. Нестеренко Л.Л., Бирюков Ю.В., Лебедев В.А. Основы химии и физики горючих ископаемых.- К.: Вища шк., 1987.-359с.
4. Бухаркина Т.В., Дигуров Н.Г. Химия природных энергоносителей и углеродных материалов.-Москва, РХТУ им. Д.И. Менделеева,-1999.-195с.
5. Агроскин А. А., Глейбман В. Б. Теплофизика твердого топлива.-- М. Недра 1980.-- 256 с.
6. Глущенко И. М. Теоретические основы технологии твердых горючих ископаемых.-- К. : Вища шк. Головное изд-во, 1980.-- 255 с.
7. Еремин И. В., Лебедев В. В., Цикарев Д. А. Петрография и физические свойства углей. -- М. : Недра, 1980. -- 266 с.
8. Касаточкин В. И., Ларина Н. К. Строение и свойства природных углей.-- М : Недра, 1975.-- 159 с.
9. Раковский В. Е., Пигулееская Л. В. Химия и генезис торфа.--М. : Недра, 1978.--231 с.
10. Саранчук В. И. Окисление и самовозгорание угля.-- К. : Наук. думка, 1982.-- 166 с.
11. Стрептихеев А. А., Деревицкая В. А. Основы химии высокомолекулярных соединений.-- 3-е изд., перераб. и доп.-- М. : Химия, 1976.-- 436 с.