Смекни!
smekni.com

Лабораторные исследования промышленных катализаторов 2 (стр. 3 из 4)

Сущность метода заключается в том, что из смеси адсорбата с газом-носителем производят поглощение адсорбата при охлаждении образца адсорбента до температуры жидкого азота. Это приводит к уменьшению концентрации адсорбата в смеси, проходящей через ячейку катарометра, и фиксированием на диаграмме адсорбционного пика. При комнатной температуре его концентрация возрастает и это дает на диаграмме десорбционный пик, направленный в противоположную сторону. Площадь пика пропорциональна количеству адсорбированного адсорбата.

При выборе адсорбата руководствуются тем, чтобы площадь его молекулы в монослое была постоянной. И при температуре опята химическая адсорбция отсутствовала. Лучше всего этим требованиям отвечают инертные газы и азот.

При выборе газа-носителя необходимо, чтобы его адсорбция при температуре опыта была настолько мала, чтобы ей можно было пренебречь. Кроме того, коэффициенты теплопроводности газа-носителя и адсорбата должны сильно различаться между собой для обеспечения высокой чувствительности катарометра.

Образование мономолекулярного слоя адсорбата на катализаторе достигается выбором определенных соотношений газов в исходной смеси. Так при работе с азотом его относительное парциальное давление должно быть в пределах 0,1-0,3, чтобы образовывался именно мономолекулярный слой.

После проведения эксперимента значение удельной поверхности рассчитывают с учетом того, что площадь одной молекулы, например азота, в плотном монослое составляет 1,62 нм2:

, (8)

где Sп – площадь пика, см2, f – масштабный коэффициент, Z – калибровочный коэффициент, см3/см2, акат – навеска катализатора, г.

Погрешность расчета по данной формуле не превышает ±5 %.

2.4.Адсорбционный метод определения радиуса пор

Для полной оценки структурных характеристик контактных масс необходимо знать объем пор или средний радиус и распределение объема пор по размерам. Зная эти данные, можно определить наличие или отсутствие и степень внутридиффузионных осложнений, а также степень использования внутренней поверхности катализатора. Адсорбционный метод основан на том, что капиллярная конденсация в узких порах происходит при давления, меньших, чем давление насыщенного пара адсорбата. Снижение давления паров над цилиндрическим столбом жидкости, находящейся в поре (капилляре) с радиусом r, выражается уравнением Кельвина:

, (9)

где υ – мольный объем жидкости, rК – радиус цилиндра, соответствующий заданному значению Р/Р0 (средний радиус Кельвина).

В опыте необходимо провести адсорбцию до относительного давления, равного единице, и десорбцию, а затем использовать для расчета десорбционную ветвь петли гистерезиса данной изотермы. Для примера, на рис. 5 дана изотерма адсорбции и десорбции паров бензола на крупнопористом силикагеле.

Рис. 5. Изотермы адсорбции и десорбции паров бензола на крупнопористом силикагеле при 20 0С

Каждая точка изотермы дает значение адсорбированного количества бензола а и относительного давления пара Р/Р0. Умножая а на мольный объем жидкости υ, находят объем пор, а подставляя в уравнение (9) относительное давление пара получают rК.

Так как капиллярная конденсация обычно сопровождается полимолекулярной адсорбцией в порах твердого вещества, значение rК отличается от r на толщину адсорбированного полимолекулярного слоя (для модели сорбента с цилиндрическими или коническими порами):

(10)

где а – адсорбция при данном относительном давлении Р/Р0, ммоль/г; Sуд – удельная поверхность сорбента (8), см2/г; υ – объем 1 ммоль ожиженного пара при температуре опыта, см3.

Значение δ соответствует началу гистерезиса. На каждом этапе десорбции сорбента наблюдается следующая зависимость:

(11)

где ∆υ – изменение сорбции, выраженной в объеме ожиженного пара при температуре опыты; ∆υ* - приращение объема опорожненных пор.

Отношение ∆υ*/∆r выражает распределение объема пор по радиусам для твердого пористого тела. Но при определении функции распределения объема пор необходима большая точность изотермы адсорбции в обоих направлениях. Поэтому измерение проводят весовым методом с применением пружинных весов Мак-Бена, рис. 6 [2].

Рис. 6 - Схема вакуумной сорбционной установки Мак Бена:

1 - сорбционная колонна, 2 - кварцевая спираль, 3 - образец, 4 - манометр, 5 - термостатируемый источник паров, 6 - ловушки, 7 - катетометр, 8 - манометрические лампы, 9 - воздушный термостат. I - к ультратермостату, II - к высокому вакууму, III - воздух.

Несмотря на допущения в расчетах распределения пор по размерам с помощью уравнения Кельвина (9), получаемые данные представляют значительный интерес и позволяют оценить макроструктуру пористых катализаторов и адсорбентов.

2.5.Ртутная порометрия

Метод основан на свойствах ртути не смачивать многие твердые тела. Связь между внешним давлением Р и капиллярным сопротивлением в порах твердого тела определяется уравнением капиллярного давления:

(12)

или

(13)

где S – площадь поперечного сечения поры; h – высота капиллярного падения жидкости; П – периметр поры; Θс – угол смачивания между твердым веществом и жидкостью 1400 для ртути; σ=480∙10-2 Н/м (для ртути) – поверхностное натяжение.

Отношение площади поперечного сечения пор S к периметру П представляет собой гидравлический радиус пор, который всегда равен половине эквивалентного радиуса поры при сечении любой формы:

(14)

где Рпривмнач-∆Р – приведенное давление, МПа; Рм – манометрическое давление, Рнач – начальное давление, ∆Р – уменьшение давления столба ртути в капилляре дилатометра.

Пористую структуру твердых тел по этому методу исследуют на установке, состоящей из поромеров низкого (для определения объема наиболее крупных пор) и высокого давления (для определения объема пор размером от 3 до 6000 нм). Приборы позволяют замерить эквивалентные радиусы пор от 2,5 до 35000 нм.

2.6.Определение истинной и кажущейся плотности катализатора

Суммарный удельный объем катализатора (см3/г) можно рассчитать по истинной (масса единицы объема собственно твердого материала без учеба объема пор) и кажущейся плотностям катализатора:

(15)

Наиболее распространен пикнометрический способ определения истинной плотности твердых тел. В качестве пикнометрической жидкости используют бензол, этиловый спирт, воду и другие растворители. Для определения пикнометр с бензолом термостатируют, затем взвешивают пикнометр с бензолом и без него. После этого определенную навеску образца заливают в пикнометре до метки бензолом и кипятят при 80-90 0С. Во время кипячения воздух удаляется из пор, и они заполняются бензолом. Далее в пикнометр добавляют бензол до метки, снова термостатируют и взвешивают. Истинную плотность рассчитывают по формуле:

(16)

где А – масса пикнометра с бензолом, г; В – масса пикнометра с навеской и бензолом, г; 0,879 – плотность бензола при 20 0С, г/см3.

Кажущаяся плотность – масса единицы объема твердого материала, включая объем пор. Для ее определения навеску образца помещают в предварительно взвешенный прибор и откачивают воздух из образца. Остаточное давление замеряют вакуум манометром. Далее ртутью заполняют образец и она вдавливается в поры под атмосферным давлением. После чего прибор очищают от ртути и взвешивают. кажущуюся плотность рассчитывают по формуле:

(17)

где А – масса прибора с ртутью, г; В – масса прибора с образцом и ртутью, г; 13,54 – плотность ртути при 20 0С, г/см3.

Суммарную пористость катализатора определяют с помощью водопоглощения W (% от массы образца):

(18)

где aкат0 и акат1 – масса испытуемого образца до и после насыщения соответственно.

2.7.Электронная микроскопия

По сравнению с другими методами позволяет видеть изучаемый объект. Если данные других исследований надо интерпретировать для получения представлений о структуре тел, то электронная микроскопия свободна от этого ограничения. При помощи микроскопа можно рассматривать образец и отпечаток рельефа его поверхности. Таким образом, при изучении твердых тел можно анализировать порошки, ультратонкие срезы и реплики.

3. Определение механической прочности катализаторов

Наиболее достоверные механические характеристики катализатора могут быть получены в условиях протекания каталитического процесса, так как прочностные свойства твердых тел зависят от действий сорбционно-активной среды и температуры.

При работе в условиях неподвижного и взвешенного слоев контактные массы испытывают различные нагрузки. В первом случае зерна находятся под давлением вышележащих слоев, т.е. «работают» на сжатие в условиях различных температур и сред. В режиме взвешивания на катализатор действуют силы трения и удара. Учитывая различия в нагрузке, испытания контактных масс производят различными методами.