Смекни!
smekni.com

Расчет ректификационной установки 2 (стр. 1 из 5)

ВВЕДЕНИЕ Ректификация — массообменный процесс, который осуществляется в большинствеслучаев в противоточных колонных аппаратах с контактными элементами (насадки тарелки) аналогичными используемым в процессе абсорбции. Поэтому методы подход к расчету и проектированию ректификационных и абсорбционных установок имею много общего. Тем не менее ряд особенностей процесса ректификации (различие соотношение нагрузок по жидкости и пару в нижней и верхней частях колонны, переменные по высоте колонны физические свойства фаз и коэффициент распределения, совместное протекание процессов массо- и теплопереноса) осложняет его расчет. Одна из сложностей заключается в отсутствии обобщенных закономерностей для расчета кинетических коэффициентов процесса ректификации. В наибольшей степени это относится к колоннам диаметром более 800 мм с насадками и тарелками, широко применяемым в химических производствах. Большинство рекомендаций сводится к использованию для расчета ректификационных колонн кинетических зависимостей, полученных при исследовании абсорбционных процессов (в приведенных в данной главе примерах в основном использованы эти рекомендации).

Рис.1 Принципиальная схема ректификационной установки:

1- ёмкость для исходной смеси ; 2, 9- насосы; 3- теплообменник-подогреватель; 4 - кипятильник;

5- ректификационная колонна; 6- дефлегматор; 7- холодильник дистиллята; 8- ёмкость для сбора дистиллята; 10- холодильник кубовой жидкости; 11- ёмкость для кубовой жидкости. Принципиальная схема ректификационной установки представлена на рис. 1. Исходную смесь из промежуточной емкости 1 центробежным насосом 2 подают в теплообменник 3, где она подогревается до температуры кипения. Нагретая смесь поступает на разделение в ректификацион­ную колонну 5 на тарелку питания, где состав жидкости равен составу исходной смеси хF Стекая вниз по колонне, жидкость взаимодействует с поднимающимся вверх паром, образующимся при кипении кубовой жидкости в кипятильнике 4. Начальный состав пара примерно равен составу кубового остатка хW, т. е. обеднен легколетучим компонентом. В результате массообмена с жидкостью пар обогащается легколетучим компонентом. Для более полного обогащения верхнюю часть колонны орошают в соответствии с заданным флегмовым числом жидкостью (флегмой) состава хР , получаемой в дефлегматоре 6 путем конденсации пара, выходящего из колонны. Часть конденсата выводится из дефлегматора в виде готового продукта разделения - дистиллята, который охлаждается в теплообменнике 7 и направляется в промежуточную емкость 8.

Изм Лист № докум Подп Дата лист
1
Из кубовой части колонны насосом 9 непрерывно выводится кубовая жидкость - продукт, обогащенный труднолетучим компонентом, который охлаждается в теплообменнике 10 и направ­ляется в емкость 11. Таким образом, в ректификационной колонне осуществляется непрерывный неравновесный процесс разделения исходной бинарной смеси на дистиллят (с высоким содержанием легколетучего компонента) и кубовый остаток (обогащенный труднолетучим компонентом).Расчет ректификационной колонны сводится к определению ее основных геометрических размеров - диаметра и высоты. Оба параметра в значительной мере определяются гидродинамическим режимом работы колонны, который, в свою очередь, зависит от скоростей и физических свойств фаз, а также от типа насадки.

РАСЧЕТ НАСАДОЧНОЙ РЕКТИФИКАЦИОННОЙ КОЛОННЫ НЕПРЕРЫВНОГО ДЕЙСТВИЯРасчет ректиификационной колоны сводится к определению ее основных геометрических размеров - диаметра и высоты. Оба параметра в значительной мере определяются гидродинамическим режимом работы колоны, который, в свою очередь, зависит от скоростей и физических свойств фаз, а также от типа и размеров насадкок.Ориентировочный выбор размера насадочных тел можно осуществить исходя из следующих соображений. Чем больше размер элемента насадки, тем больше её свободный объём и, следовательно, выше производительность. Однако вследствии меньшей удельной поверхности эффективность крупных насадок несколько ниже. Поэтому насадку большого размера применяют, когда требуется высокая производительность и сравнительно невысокая степнь чистоты продуктов разделения.Для данного случая примем насадку из керамических колец Рашига размером 50´50´5 мм. Удельная поверхность насадки а = 87,5 м23, свободный объем e = 0,785 м33, насыпная плотность 530 кг/м3.Насадочные колоны могут работать в различных гидродинамических режимах: плёночном, подвисания и эмульгирования. Выберем полёночный режим работы колоны.Рассчитать и спроектировать ректификационную установку непрерывного действия для разделения бинарной смеси вода-уксусная кислота. Производительность установки по исходной смеси GF= 9500 кг/час= 2,64 кг/сек.

Изм Лист № докум Подп Дата лист
2

1.1.Материальный баланс колонны и рабочее флегмовое число.Содержание смеси:

Температура исходной смеси tсм=37,0°СТемпература кубового осадка после выхода его из холодильника tхол w=17,0°СТемпература дистиллята после выхода его из холодильника tхол p=42,0°СПроизводительность F= 9,5·10-3кг/ч или 2,64 кг/сПроизводительность колонны по дистилляту Р кубовому остатку W определим из уравнений материального баланса колонны: Отсюда находим:

(1.1)

Нагрузки ректификационной колонны по пару и жидкости определяются рабочим флегмовым числом R; его оптимальное значение Rоптможно найти путём технико-эконо­мического расчета. Используют приближенные вычисления, основанные на определении коэффициента избытка флегмы (орошения) b=RRmin. Здесь Rmin- минимальное флегмовое число:

(1.2)где xF и xP- мольныедолилегколетучегокомпонента соответственно в исходной смеси и дистилляте, кмоль/кмоль смеси; yF*- концентрация легколетучего компонента в паре, находящемся в равновесии с исходной смесью, кмоль/кмоль смеси. Один из возможныхприближенных методов расчета R заключается в нахождении такого флегмового числа, которому соответствует минимальное произведение N´(R+1), пропорциональное объему ректификационной колонны (N - число ступеней изменения концентраций или теоретических тарелок, определяющее высоту колонны, а (R+1)- расход паров и, следовательно, сечение колонны) . Определим R .Пересчитаем составы фаз из массовых долей в мольные по соотношению

(1.3)где Mв и Мук - молекулярные массы соответственно воды и уксусной кислоты,кг/кмоль. Аналогично найдем:

Изм Лист № докум Подп Дата лист
3
yF*=0,65- определяем по графику. Тогда минимальное флегмовое число равно:

Задавшись различными значениями коэффициентов избытка флегмы b, определим соответствующиефлегмовые числа. Графическим построением ступеней изменения концентраций между равновесной и рабочими линиями на диаграмме состав пара yсостав жидкости х(рис.2) находимN. Результаты расчетов рабочего флегмового числа представлены на графике и приведены ниже:Таблица 1. Расчет действительного флегмового числа.

Условно-оптимальное значение R = 3,3.

При R = 3,3 b = 1,57

Средние массовые расходы (нагрузки) по жидкости для верхней и нижней частей колонны определяют из соотношений;

Lв = РRМверхр (1.4)

Lн = PRMнижр+F´Mниж / МF , (1.5)

где МP и MF - мольные массы дистиллята и исходной смеси; МВ и МН - средние мольные массы жидкости в верхней и нижней частях колонны.

Мольную массу дистиллята в данном случае можно принять равной мольной массе легколетучего компонента. Средние мольные массы жидкости в верхней и нижней частях колонны соответственно равны:

Мверх = Мвхср.вук(1- хср. в), (1.6)

Мниж = Мвхср.нук(1- хср. н);

где Мв и Мук - мольные массы воды и уксусной кислоты соответственно;

хср в и хср н - средний мольный состав жидкости в верхней и нижней частях колонны:

кмоль/кмоль см

кмоль/кмоль см

Тогда

кг/кмоль