Федеральное агентство по образованию РФ
Министерство образования и науки РФ
технологический институт
Кафедра «Химическая технология»
Курсовая работа
по дисциплине
«Химия и технология полимерных композиционных материалов»
на тему
«Разработка технологии полимеризационного наполнения ПКА дисперсными наполнителями»
2007
Введение
В настоящее время рынок потребления высоконаполненных композиционных магнитотвёрдых материалов, к которым относятся так называемые магнитопласты, является одним из самых динамичных в промышленно развитых странах мира (рост 12,5% в год). Согласно результатам научно-исследовательских и опытно-конструкторских работ магнитопласты (МП) по своей энергоёмкости почти вплотную приблизились к металлокерамическим магнитам, а за счёт своей высокой технологичности стали более эффективными. Это обусловлено относительно простой технологией готовых изделий из магнитопластов в сравнении со спеченными материалами, что связано, прежде всего, с отсутствием в процессе изготовления таких дорогих и сложных операций, как спекание, длительная термическая обработка, шлифование с удалением значительного количества материала.
Отлитые под давлением заготовки из магнитопластов выпускаются с малыми допусками и, как правило, не нуждаются в доводочных операциях.
Магнитопласты используют в шаговых двигателях принтеров и факсимильных аппаратов, офисной электроники, аудио- и видеооборудовании, в особо компактных двигателях постоянного тока мощностью до 1 кВт.
В России промышленное производство высоконаполненных магнитотвердых материалов практически отсутствует, и в этой области страна значительно отстает от передовых промышленно развитых стран. Широкое масштабное освоение эффективной технологии магнитопластов в значительной степени сдерживается недостаточной разработанностью теоретической базы, определяющей закономерности формирования эксплуатационных и технологических свойств высоконаполненных магнитных композиционных материалов и отсутствием необходимого для реализации технологии оборудования и дешевой сырьевой базы.
В качестве связующего в магнитопластах могут быть использованы Различные реакто- и термопласты. Использование реактопластов в качестве связующих для МП оправдано только в тех случаях, когда другие полимеры не обеспечивают необходимые требования к технологии их изготовления и эксплуатации. Основной недостаток реактопластов – длительная стадия высокотемпературного отверждения. Поэтому в производстве МП наиболее широко используются полимеры, перерабатываемые высокопроизводительными методами: литьем под давлением, экструзией и прессованием.
Особый интерес представляет разработка технологии микрокапсулирования частиц наполнителя в полимерной матрице. Микрокапсулирование может быть выполнено различными способами, в частности методом осаждения полимера на поверхность наполнителя из раствора, методом полимеризационного и поликонденсационного наполнения, т.е. синтезом полимера непосредственно на поверхности наполнителя. Метод полимеризационного наполнения является наиболее перспективным по сравнению с традиционным (смешение) и методом поликонденсационного наполнения ПКМ, так как эти методы имеют ряд недостатков.
Поэтому целью дипломного проекта является разработка технологии полимеризационного наполнения ПКА дисперсными наполнителями.
1. Цель и задачи работы, объекты исследования
Цель: Разработка технологии полимеризационного наполнения ПКА дисперсными наполнителями.
Задачей является изучение влияния продолжительности синтеза на свойства полученного ПКА.
Сырьем для получения магнитопласта является:
· ε - капролактам,
· вода,
· уксусная кислота,
· фосфорная кислота
· сплав Nd-Fe-B.
Выбор данных компонентов обусловлен доступностью и низкой стоимостью сырья, а также требованиями предъявляемыми к магнитопластам.
Капролактам
Капролактам - ГОСТ 7850-86
NH (CH2)5CO
Таблица 1
Свойства капролактама
Показатели свойств | Значения |
Внешний вид | Кристаллы белого цвета |
Молекулярная масса, г/моль | 113 |
Температура плавления, °С | 68-70 |
Температура кипения, °С | 262 |
Плотность, кг/м3 | 1476 |
ε -капролактам хорошо растворим в воде (525 г в 100 г Н2О), спирте, эфире, бензоле, плохо - в алифатических углеводородах.
Уксусная кислота
CH3COOH
· Температура плавления, °С 16,6
· Температура кипения, °С / мм рт. ст. 118,1
· Плотность при 20 °С, г/см3 1,0492
· Константа диссоциации в водных растворах при 25 °С 1,76·10-5
Уксусная кислота растворяется в воде.
Фосфорная кислота
Фосфорная кислота-Н3РО4
Таблица 2
Показатели свойств | Фосфорная кислота |
Внешний вид | Бесцветные кристаллы |
Молекулярная масса, г/моль | 98 |
Температура плавления, 0С | 42,35 |
Температура кипения, 0С | 864 |
Плотность, кг/м3 | 1,87 |
Вода дистиллированная
Вода дистиллированная (H2O) – ГОСТ 6709 – 72.
Сплав Nd-Fe-B
В качестве магнитного наполнителя используется сплав Nd-Fe-B производимый ГУП НТЦ «ВНИИНМ имени академика А.А. Бочвара» (г.Москва). Основные характеристики сплава Nd-Fe-B приведены в табл.2.
Таблица 2. Свойства магнитных наполнителей
Характеристика | Значение свойств |
Плотность, кг/м3 | 7600 |
Остаточная магнитная индукция (Br), Тл | 0,81 |
Коэрцитивная сила по намагниченности (Нсм), кА/м | 1048 |
Коэрцитивная сила по индукции (Нсв), кА/м | 504 |
Максимальное энергетическое произведение (ВН)max, кДж/м3 | 101 |
Размер частиц, мм | 0,05-0,2 |
Готовым изделием являются кольцевые магниты с наружным диаметром 6 см, внутренним диаметром 5 см и высотой 5 мм.
Магнитопласт, получаемый на основе сплава Nd-Fe-B и полиамидного связующего имеет следующие основные характеристики:
Содержание НМС, % не более 2
Остаточная магнитная индукция, Тл не менее 0,3
Коэрцитивная сила, кА/м не менее 320-350
Прочность при межслоевом сдвиге, МПа не менее 5
2. Методы и методики эксперимента
Целью данной работы являлась оценка основных качественных характеристик полимеризационнонаполненного поликапроамида сплавом Nd-Fe-B.
В основу метода получения ПКМ заложен принцип синтеза поликапроамида путем полимеризации капролактама, осуществляемый в промышленном масштабе.
2.1. Синтез ПКА
ε-Капролактам растирают в фарфоровой ступке. В предварительно взвешенную сухую ампулу берут навеску капролактама с точностью до 0,0002 г. С помощью микропипетки вводят в ампулу расчетное количество активатора. Ампулу быстро запаивают. Затем ампулу помещают в песчаную баню с температурой 260°С для полимеризации капролактама; время полимеризации 6 часов.
2.2. Определение НМС
Для определения содержания НМС полученный полимер измельчают и кипятят со 100 мл воды в течение 2-х часов в круглодонной колбе с обратным холодильником для удаления мономера и низкомолекулярных примесей. Фильтруют, промывают и сушат. Выход полимера рассчитывают по формуле:
,где m0 – навеска полимера до кипячения, г,
m1 – навеска полимера после кипячения, сушки, г.
2.3. Определение вязкости растворов ПКА
Экспериментальные методы определения сводятся к измерению значений для ряда концентраций раствора. Рассчитанные значения ηуд/С=f(С) и экстраполируют полученные данные к С=0.
Измерение значений ηо и η проводят в капиллярных вискозиметрах типа ВПЖ-4. Определенное с помощью экстраполяции значение характеристической вязкости [η] позволяет рассчитать молекулярную массу (Мn) полимера по формуле Марка – Куна – Хаувинка:
[η]=Кh×Мn2
Константа Хаггинса определяется из соотношения:
2.4. Определение температуры плавления
Температура плавления полученного волокнонаполненного поликапроамида определяется на песчаной бане. Полученный полимер помещают в пробирку, туда же опускается термометр на 500°С, и нагревается до полного расплавления. Записывают две температуры: одну, при которой появляется жидкая фаза; а другая при которой все вещество превратилось в расплав. Интервал температур между началом плавления и его окончанием называется температурой плавления.
2.5. Метод инфракрасной спектроскопии (ИКС)
Для изучения взаимодействия модифицирующих добавок с полимерным связующим применялся метод ИК-спектроскопии. ИК-спектры регистрировались на спектрофотометре «Specord» М-80 в области 400 ¸ 4000 см-1. Исследуемые образцы наполнителя, связующего и композиционных материалов измельчались в вибрационной шаровой мельнице до тонкодисперсного состояния, добавлялось несколько капель иммерсионной жидкости, тщательно растирались в агатовой ступке и далее полученную пасту помещали между двумя пластинами (одна - из NaCl, другая из KBr). Для записи высококачественных спектров поглощения в качестве иммерсионной жидкости в области 4000 ¸ 2000 и 1500 ¸ 1300 см-1 использовали гексахлорбутадиен; в области 2000 ¸ 1500 и 1300 ¸ 400 см-1 - вазелиновое масло.