Смекни!
smekni.com

Ферментативный катализ (стр. 2 из 2)

К факторам, определяющим высокую эффективность ферментов, относят:

1. Концентрационный эффект.

2. Ориентационный эффект.

3. Полифункциональность реакционного центра.

Сущность концентрационного эффекта в случае ферментов ничем не отличается от концентрационного эффекта в гетерогенном катализе. Фермент в своем реакционном центре создает локальную концентрацию субстрата, которая существенно выше, чем средняя концентрация в растворе. В реакционном центре фермента селективно концентрируются молекулы, которые должны прореагировать между собой. Такой эффект может приводить к ускорению реакции на несколько порядков.

При протекании обычных химических реакций важно, какими частями происходит столкновение реагирующих молекул. То есть, молекулы при столкновении должны быть соответствующим образом ориентированы друг относительно друга. В реакционном центре фермента при координации молекулы субстрата и образовании фермент-субстратного комплекса происходит четкая ориентация реагирующих молекул за счет взаимодействия с функциональными группами реакционного центра. Это приводит к ускорению реакций примерно на три порядка.

Под полифункциональностью реакционного центра фермента понимают одновременное или согласованное воздействие функциональных групп, входящих в состав реакционного центра, на молекулу субстрата. При этом происходит не только фиксация превращающейся молекулы в строго определенном положении (см. предыдущий пункт), но и изменение характеристик самой молекулы: растягивание связей, изменение валентных углов. Эти изменения приводят к повышению реакционной способности субстратов, т.е., к их активации и ускорению их превращения.

Кинетика ферментативного катализа имеет некоторые особенности. Способность ферментов специфически связывать свои субстраты обусловливает важнейшую особенность катализируемых ими реакций: они начинаются с образования фермент-субстратного комплекса. Связывание субстратов ограничивает их подвижность, сближает и ориентирует их относительно друг друга оптимальным образом для осуществления реакции; уменьшение степеней свободы поступательного и вращательного движения приводит к снижению энтропии. Важным следствием сближения и взаимной ориентации реагирующих групп субстратов, с одной стороны, и функциональных групп фермента, с другой, является то, что катализ становится внутримолекулярным. Это существенно увеличивает его эффективность, так как продуктивные столкновения между молекулами в растворе относительно редки.

По Л. Михаэлису и М. Ментен образование фермент-субстратного комплекса осуществляется в результате сравнительно быстрой обратимой стадии:

k1

E + SES

k-1

Затем комплекс более медленно распадается с образованием продукта и высвобождением фермента:

k2

ESE + P

k-2

Вторая стадия реакции является лимитирующей. Общая скорость реакции пропорциональна концентрации фермент-субстратного комплекса. В начальный период реакции концентрация продукта пренебрежимо мала, и вторую стадию можно считать необратимой. В таком случае начальная скорость ферментативной реакции выражается уравнением:

Ro = k2[ES]

Приняв, что [Eo] – общая концентрация фермента, а ([Eo] - [ES]) соответствует концентрации свободного фермента, а также что [S] >> [Eo], можно получить выражение для [ES]:

[ES] = ([Eo]∙ [S]/{ [S] + (k2 + k-1)/k1}

Отношение (k2 + k-1)/k1 называется константой Михаэлиса ( КМ); с учетом этого концент-

рация фермент-субстратного комплекса и начальная скорость могут быть описаны уравне-ниями:

[ES] = [Eo]∙ [S]/ (КМ + [S])

Ro = k2[ES] = k2[Eo]∙ [S]/ (КМ + [S])

Последнее уравнение называют уравнением Михаэлиса-Ментен. Необходимо отметить, что величина КМсовпадает с термодинамической константой диссоциации фермент-субстратного комплекса только в случае квазиравновесия первой стадии и лимитирования процесса второй стадией. Во всех остальных случаях КМ является сложным комплексом констант скорости стадий ферментативного процесса.

Рассмотрим механизм функционирования ферментативного катализатора на примере гидролитического фермента химотрипсина.

Химотрипсин – фермент поджелудочной железы, функция которого в организме заключается в расщеплении белков пищи, т.е. пептидной связи. Кроме этого химотрипсин может катализировать гидролиз сложных эфиров и некоторые другие реакции. Брутто формула химотрипсина, включающего 241 остаток аминокислот, не несет информации о строении: С1105H1732O344N300S12, также как перечисление количества аминокислотных остатков: аланин22 аргинин3 аспарагиновая кислота8 аспарагин14 глутаминовая кислота3 глутамин10 глицин24 гистидин2 изолейцин10 лейцин19 лизин14 метионин2 полуцистин10 пролин9 серин28 треонин22 триптофан8 тирозин4 валин23 фенилаланин6. Перечисленные аминокислотные остатки соединены в полипептидную цепь в определенной последовательности (первичная структура). Отдельные части полипептидной цепи за счет образования дополнительных связей (см.выше) скручиваются в α-спирали, β-тяжи и петли (вторичная структура). Перечисленные элементы вторичной структуры за счет дополнительных взаимодействий сворачиваются в два домена, в месте соприкосновения которых возникает активный центр фермента, включающий остаток серина (Х – -СН2ОН ), аспарагиновой кислоты ( Х - -СН2СОО-), гистидина.


Механизм реакции гидролиза сложного эфира показан на схеме. 2. При подходе субстрата к активному центру фермента неполярная гидрофобная часть субстрата взаимодействует с гидрофобной частью активного центра, протон от серина переходит на азот гистидина, а протон от второго азота гистидина смещается к аниону остатка аспарагиновой кислоты. Образовавшийся из гидроксильной группы серина сильный нуклеофил - -О атакует электрофильный углерод субстрата, в то время как нуклеофильная часть субстрата взаимодействует с протоном, связанным с гистидином. В результате этих взаимодействий образуется фермент-субстратный комплекс. На следующей стадии рвется связь С-Х в субстрате, уходит молекула НХ, а ее место в активном центре занимает молекула воды. Протон от остатка аспарагиновой кислоты возвращается к второму азоту гистидина. Затем рвется предварительно активированная связь О-Н в молекуле воды (протон связывается с первым азотом гистидина, а гидроксил – с углеродом бывшего субстрата). Протон от второго азота гистидина опять возвращается к остатку аспарагиновой кислоты. И наконец выделяется кислота, место которой занимает новый субстрат или активный центр возвращается в исходное состояние.


Рекомендуемая литература

1. Г. Хенрици-Оливэ顟 С. Оливэ. Химия каталитического гидрирования СО. Москва, Мир, 1987 г.

2. Ф. Басоло, Р. Джонсон. Химия координационных соединений. Москва, Мир, 1966.

3. Под ред. Г. Цейсса. Химия металлоорганических соединений. Москва, Мир, 1964.

4. Э. Фишер, Г. Вернер. π-Комплексы металлов. Москва, Мир, 1968.