–––––––- sp3-Гібридизований атом карбону
p-Комплекс s-Комплекс (аренонієвий катіон)
4 Повернення ароматичності. Оскільки втрата ароматичності енергетично невигідна, система прагне повернути її найпростішим шляхом, а саме – відщепленням протону Н+ від s-комплексу. Внаслідок цього два електрони, що утворювали зв¢язок С-Н, приєднуються до тих чотирьох p-електронів, які залишалися в s-комплексі. Тому замкнута шестиелектронна система поновлюється і молекула переходить в ароматичний стан:
–––––––––- + H+.
s-Комплекс Продукт Протон
5 Утворення побічного продукту. Відщеплений протон взаємодіє з негативно зарядженим аніоном А-, що утворився при розриві зв¢язків у молекулі реагенту на перший стадії:
Н+ + А- –––––––- HA.
Побічний продукт
У загальному вигляді механізм реакції електрофільного заміщення в аренах можна зобразити схемою
Субстрат Електрофіл p-Комплекс
–H+–––> –––––––>
s-Комплекс Продукт
Розглянемо найважливіші реакції електрофільного заміщення SE.
1 Галогенування бензену проходить тільки за наявності каталізаторів – так званих кислот Льюїса (речовин, здатних зв¢язувати вільну електронну пару): AlCl3, FeCl3, AlBr3, FeBr3, SnCl4, TiCl4, BF3. Практичного значення набули реакції хлорування та бромування, тому що реакція з хімічно активним F2 проходить деструктивно, а з І2 – дає надзвичайно малий вихід завдяки низькій реакційній здатності йоду.
80оC
+ Br2 –––––- + HBr,
AlВr3
Бромбензен
25оC
+ Cl2 ––––––––- + HCl.
AlCl3
2 Нітрування. Бензен реагує дуже повільно навіть з концентрованою HNO3 при нагріванні, але при дії на нього нітрувальною сумішшю (суміш концентрованих HNO3 i H2SO4) досить легко перетворюється на нітропохідні.
Електрофільною частинкою є нітроїл-катіон NO2+, який утворюється під впливом сірчаної кислоти:
HO-NO2(к) + 2H2SO4 (к) Û 2HSO4- + H3O+ + NO2+,
+ HO-NO2(к) --------- + H2O.
H2SO4 (к)
Бензен Нітробензен
3 Сульфування. Бензен сульфується при звичайній
температурі олеумом (розчин SO3 у 100% H2SO4) або чадною сірчаною кислотою, яка дає SO3 внаслідок встановлення рівноваги:
2H2SO4 Û SO3 + H3O+ + HSO4-.
Отже, електрофільним реагентом є сульфур(ІV) оксид, оскільки за рахунок трьох електронегативних атомів оксигену, які відтягують на себе електронну густину зв¢язків S=О, на атомі сульфуру виникає великий дефіцит електронної густини і достатньо значний частковий позитивний заряд (3d+). Реакція сульфування належить до оборотних процесів: при оброблюванні продукту перегрітою водяною парою проходить зворотна реакція – десульфування:
SO3×H2SO4, 250C––––––––––––––––-
-––––––––––––––––.
H2O, 1500C (-H2SO4)
Бензен Бензенсульфонова кислота
4 Алкілування – реакція Фріделя-Крафтса – введення алкільної групи у бензенове кільце за наявності каталізаторів (кислот Льюїса) з утворенням гомологів бензену. Як алкілувальний реагент використовують галогеналкани СnH2n+1Hal, спирти CnH2n+1OH, алкени CnH2n, наприклад:
80о
+ CH3Cl ––––––- + HCl.
AlCl3
Бензен Толуол
Каталізатор ініціює утворення електрофілу за схемою
СН3Cl + AlCl3 - CH3+ + [AlCl4]-.
Реакції з алкенами і спиртами каталізуються найчастіше кислотами
0оC+ СH3-CH====CH2 –––-,
HF
Ізопропілбензен (кумол)
OH 60оC + СH3-C-CH3 –––––––––-.OH H3PO4 Трет-бутилбензен
5 Ацилювання – заміщення атома гідрогену в бензеновому кільці на ацильну групу RCO. Ацилювальним реагентом є галогенангідриди чи ангідриди карбонових кислот; при цьому одержують змішані ароматично-аліфатичні кетони.O 80оC
+ СН3-С --------- + HClCl AlCl3
Бензен Хлорацетил Ацетофенон
O CH3-C 80оC. + O --------- + CH3COOH CH3-C AlCl3О
Бензен Ангідрид оцтової кислоти Ацетофенон
ІІ Реакції приєднання АЕ
Реакціі приєднання для ароматичних вуглеводнів не характерні, оскільки вони супроводжуються порушенням ароматичності і вимагають великої витрати енергії. Тому ці реакції проводяться в дуже жорстких умовах:
1 Гідрування (відновлення)
200оC, 50 Атм
+ 3Н2 ––––––––––––- .
Ni
Бензен Циклогексан
Гідрування використовується для одержання циклогексану, який є, по-перше, добрим розчинником, а по-друге, – вихідною речовиною при добуванні адипінової кислоти, а з неї – капролактаму.
Реакція оборотна: при 3000С і нормальному тиску проходить зворотний процес.
2 Хлорування при інтенсивному ультрафіолетовому опромінюванні:
Гексахлорциклогексан (гексахлоран)
Гексахлоран – сильна харчова, контактна і дихальна отрута, застосовується як інсектицид: смертельна доза для мух становить усього 10-12 г.
ІІІ Реакції окиснення
Відмінною рисою ароматичних вуглеводнів є їх стійкість по відношенню навіть до сильних окисників. У звичайних умовах на них не діють ні концентровані кислоти, ні хромова суміш, ні розчин KMnO4. Однак у жорстких умовах вони піддаються окисненню:
О О
500оC НС С НС С О+ О2 ––––––- О––––- О
V2O5 НС С НС С
Бензен -2СО2 О О
-2Н2О
Малеїновий ангідрид Малеїнова кислота
Малеїновий ангідрид і малеїнова кислота використовуються у виробництві поліестерних смол, склопластику і лакофарбових матеріалів.
У живих організмах бензен під дією ферментів окиснюється до дуже шкідливої сполуки – муконової кислоти:
+ 2О2 –––––––- HOOC-CH=CH-CH=CH-COOH.
Бензен Фермент Муконова кислота
ВПЛИВ ЗАМІСНИКІВ НА РЕАКЦІЙНУ ЗДАТНІСТЬ АРОМАТИЧНИХ ВУГЛЕВОДНІВ
Найважливішим чинником, що визначає хімічні властивості речовин, є розподілення електронної густини в молекулах, яке залежить від взаємного впливу атомів і атомних груп. Якщо молекула містить тільки s-зв¢язки, взаємний вплив здійснюється через індуктивні ефекти, а в спряжених системах виявляється дія мезомерного ефекту.