Смекни!
smekni.com

Производство этилового спирта (стр. 1 из 3)

Московская Государственная Академия

Тонкой Химической Технологии

им. М.В. Ломоносова

Кафедра общей химической технологии

Курсовая работа

на тему: «Производство этилового спирта»

Москва

2003 г


Содержание

1. Введение

2. Исходное сырьё

3. Характеристика целевого продукта

4. Физико-химическое обоснование основных процессов производства этилового спирта

5. Описание технологической схемы процесса производства этилового спирта

6. Материальный баланс ХТС производства этанола на 9000кг 100% С2Н5ОН

7. Расчет основных технологических показателей процесса

8. Литература


1. Введение

Этиловый спирт находит широкое применение в народном хозяйстве в качестве растворителя, также применяется в производстве дивинила, в пищевой и медицинской промышленности, в качестве горючего для ракетных двигателей, антифриза и т.д., является важным промежуточным продуктом органического синтеза (в производстве сложных эфиров, целлулоида, искусственного шелка, ацетальдегида, уксусной кислоты, хлороформа, хлораля, диэтилового эфира и других продуктов).

Таким образом, этиловый спирт относится к числу многотоннажных продуктов основного органического синтеза, мировое производство этилового спирта составляет свыше 2,5 млн. т/г (по объему производства занимает первое место в мире среди всех органических продуктов).


2. Характеристика исходного сырья

В качестве исходного сырья в производстве этилового спирта используется этилен. В настоящее время основным способом его получения является пиролиз (высокотемпературный крекинг) углеводородов. Пиролизу подвергают фракции прямой перегонки нефти, состоящие алканов, циклоалканов, аренов, природные и попутные нефтяные газы, содержащие алканы.

Этилен образуется в результате реакций распада тяжелых алканов и дегидрирования низкомолекулярных алканов. Потенциальный выход этилена зависит от вида исходного сырья. Виды сырья, используемые в мировом производстве этилена, и их доля в общем балансе производства следующие:

Сырье Этан Пропан Бутан Бензин Газойль
Доля, % 36 11 3 47 3

Лучшим сырьем являются парафины, поскольку с повышением содержания водорода в исходных углеводородах выход алкенов возрастает.

3. Характеристика целевого продукта

Этанол C2H5OH является жидкостью, кипящей при температуре 78,390С, с воздухом образует взрывоопасные смеси в пределах концентраций 3-20% (по объему). С водой дает азеотропную смесь, содержащую 95,6% спирта и кипящую при температуре 78,10С. В виде такого ректификата этиловый спирт обычно и употребляют в технике.


4.Физико-химическое обоснование основных процессов производства этилового спирта

До недавнего времени производство этилового спирта основывалось на пищевом сырье – сбраживание крахмала из некоторых зерновых культур и картофеля с помощью ферментов, вырабатываемых дрожжевыми грибками. Этот способ сохранился и до сих пор, но он связан с большими затратами пищевого сырья и не может удовлетворить промышленность. Другой метод, также основанный на переработке растительного сырья, заключается в переработке древесины (гидролизный спирт). Древесина содержит до 50% целлюлозы, и при ее гидролизе водой в присутствии серной кислоты образуется глюкоза, которую подвергают затем спиртовому брожению:

(C6H10O5)x + xH2O - xC6H12O6,

C6H12O6 - 2C2H5OH + 2CO2.

Синтетический этиловый спирт получают гидратацией этилена.

Гидратация этилена осуществляется двумя методами: при помощи серной кислоты (сернокислая гидратация) и непосредственным взаимодействием этилена с водяным паром в присутствии катализатора (парофазная каталитическая гидратация).

Сернокислая гидратация этилена

Сернокислый способ, предложенный А.М. Бутлеровым, получил промышленное осуществление только в послевоенные годы. Он состоит из следующих четырех стадий: 1) абсорбция этилена серной кислотой с образованием сернокислых эфиров; 2) гидролиз эфиров; 3) выделение спирта и его ректификация; 4) концентрирование серной кислоты.

Взаимодействие между этиленом и серной кислотой состоит из двух этапов: первый – физическое растворение этилена в серной кислоте и второй - гомогенное взаимодействие обоих компонентов с образованием алкилсульфатов по уравнениям:

C2H4 + H2SO4 = C2H5OSO3H

C2H5OSO3H + C2H4 = (C2H5O)2SO2.

Поглощение (абсорбция) этилена серной кислотой – процесс обратимый, экзотермический (DH=-50232 кДж/моль), протекает с уменьшением объема.

Скорость абсорбции этилена описывается уравнением:

dG/dt = K*F*P*f(с),

где G – количество поглощаемого этилена, t – время, К – коэффициент, зависящий от интенсивности диффузии, и, следовательно, от интенсивности контакта реагентов (барботаж, перемешивание и т.д.), F – поверхность контакта реагентов, Р – парциальное давление этилена, f(c) – множитель, зависящий от концентрации серной кислоты.

Так, абсорбция этилена 93%-ной кислотой протекает в 10 раз медленнее, чем при концентрации 97,5%. Однако, применение для абсорбции этилена олеума нецелесообразно, т.к. при этом снижается выход этанола из-за образования побочных продуктов – сульфосоединений и повышенного образования полимеров.

При прочих равных условиях скорость абсорбции этилена увеличивается с ростом температуры и парциального давления, однако, при температуре выше 900С начинается интенсивное образование полимеров. Увеличение парциального давления этилена выше 2 МПа становится тоже малоэффективным.

Фактором, ускоряющим процесс абсорбции, является наличие в исходной серной кислоте этилсульфатов, которые, обладая свойствами эмульгаторов, увеличивают поверхность контакта вследствие пенообразования, и тем самым способствуют более быстрому и полному растворению этилена.

В настоящее время в промышленных установках приняты следующие условия абсорбции этилена: концентрация серной кислоты 97-98%, температура 80-850С, парциальное давление этилена на входе в абсорбер 1-1,5МПа, содержание пропилена и высших олефинов в исходной этилен-этановой фракции <0,1%. В ходе второй стадии идет гидролиз этил - и диэтилсульфата по уравнениям:

C2H5OSO3H + H2O - C2H5OH + H2SO4,

(C2H5O)2SO2 + 2H2O - 2 C2H5OH + H2SO4

Эта стадия также обратима, для обеспечения ее протекания необходим избыток воды, и, по возможности, быстрое удаление спирта из зоны реакции, т.к. кроме основной реакции идет образование диэтилового эфира:

(C2H5O)2SO2 + C2H5OH - C2H5OC2H5 + C2H5OSO3H,

(C2H5O)2SO2 + H2O - C2H5OC2H5 + H2SO4.

Главным преимуществом сернокислой гидратации по сравнению с прямой гидратацией является возможность применения неконцентрированного этилена, т.к. его концентрирование связано с большими капитальными и эксплуатационными затратами.

Однако, метод сернокислой гидратации имеет ряд недостатков. Среди них можно отметить следующие:

- применение сложных и громоздких конструкций;

- малоэффективное удаление полимеров однократным экстрагированием. При принятом методе экстрагирования в экстракт переходит 70-75% полимеров, значит, до 30% полимеров остается в разбавленной кислоте;

- концентрирование отработанной серной кислоты. Эта часть технологического процесса является самым слабым звеном во всем методе сернокислой гидратации. Во-первых, концентрировать кислоту удается лишь до 88-90%, а, во-вторых, такой процесс концентрирования из-за высокой температуры топочных газов приводит к ощутимым потерям серной кислоты от раскисления, сопровождающегося выбросом вредного SO2 в атмосферу;

- неиспользованные возможности экономии энергетических средств.


Парофазная гидратация этилена

Наиболее разработанным применительно к имеющимся промышленным установкам в настоящее время является процесс газофазной гидратации:

CH2=CH2(г.) + H2O(г.) = C2H5OH(г.) + 41868Дж/моль.

Механизм:

CH2=CH2 + Н+ « СН3-СН2+,

СН3-СН2+ + Н2О « СН3-СН2-ОН2+,

СН3-СН2-ОН2+ « СН3-СН2-ОН + Н+.

Но наряду с основной реакцией идут параллельные и последовательные побочные реакции:

C2H4 + H2O = C2H5OC2H5,

n(C2H4) = (-CH2-CH2-)n.

Таким образом, процесс сложный, обратимый, несмещенный (см. таблицу), экзотермический, протекает с уменьшением объема.

Таб. Равновесный выход этанола.

Отношение количеств веществ: МH2O/MC2H4 Равновесный выход за один проход при давлении 8Мпа при температуре:
2800С 2900С
0,6 15,4 8,53
0,8 18,3 10,15

Следует обратить внимание на два физико-химических фактора, которые определяют основные технологические параметры процесса. Прежде всего, это активность катализатора, которая имеет решающее значение для определения температуры процесса. Катализаторами прямой гидратации могут служить фосфорная кислота и ее соли. Чаще всего используется фосфорная кислота концентрацией 85-87% на таких носителях, как алюмосиликаты, силикагели, пемза и др.; значительная часть кислоты (до 35%) находится в свободном состоянии. Активность этого катализатора является невысокой. Только при температуре 280-3000С ее можно считать более или менее приемлемой для промышленных условий. При более высокой температуре в значительной мере развиваются побочные процессы: полимеризация этилена, усиленное образование эфира и т.д.