Смекни!
smekni.com

Химия и физика пленкообразующих веществ (стр. 2 из 3)

Для полимеров обычно принимают

,

т.е.

, так как
при

Для раствора

, причем

Концентрационная зависимость вязкости растворов полимеров в первом приближении может быть описана следующими соотношениями:

по Я. Франкелю –

по С. Папкову –

где А и В – постоянные для данной системы «полимер – растворитель»; С – концентрация полимера (по массе).

Для ряда волокнообразующих полимеров (ХПВХ, ПАН, АЦ) может быть принято полулогарифмическое соотношение в области средних концентраций:

В этом случае значения постоянных А и В существенно зависят от термодинамического качества растворителя [рис.2.2]: его ухудшение обусловливает более резкое увеличение

. Эти результаты свидетельствуют о том, что вязкость изоконцентрированных растворов тем ниже, чем лучше термодинамические свойства растворителя.

Очевидно, что уравнения

и
описывают соответствующие прямолинейные зависимости, что позволяет проводить расчетную оценку вязкостных свойств при различных концентрациях растворов.

Рис. 2.2. Влияние природы растворителя на эффективную вязкость концентрированных растворов полиакрилонитрила ( С – концентрация полимера) при 298 К и τ = 5 Па.

Растворители:

1 - диметилформамид;

2 - диметилсульфоксид;

3 - 90% -й водный раствор этиленкарбоната;

4 - 51,5% -й водный раствор NaCNS;

5 - 60% -й водный раствор ZnCl2.

Билет №13.

3. Методы определения оптических свойств покрытий.

Оптические свойства. К оптическим характеристикам покрытий относятся:

- Цвет

- Прозрачность

- Укрывистость

- Блеск.

Эти свойства определяются составом и качеством приготовления лакокрасочного материала, природой и качеством подготовки поверхности, соблюдением технологического формирования покрытия. При оценке внешнего вида покрытий необходимо учитывать их функциональное назначение, физиологическое и психологическое влияние на человека. Оптические свойства, как и другие показатели покрытий, изменятся в процессе эксплуатации, поэтому необходимое требование к покрытиям – их длительная стабильность.

Для определения оптических свойств покрытий применяют:

- Спектрофотометрический

- Колориметрический

- Визуальный способы.

Спектрофотометрический метод основан на определении спектрального состава излучения, спектральных коэффициентов пропускания и отражения, яркости образцов, отражающих свет.

Измерение колориметрическим методом основано на принципе смешения окрашенных световых потоков с известными параметрами (или смешения цветов), при котором достигается идентификация определяемого цвета.

Для каждой области спектра преимущественно используют свои приборы. Так, для характеристики пленок и покрытий в видимой области применяют спектрофотометр СФ-18, фотометры ФО-1, ФОУ, колориметры фотоэлектрические КФО и КФК-2, КФК-3 [рис.3] и т.д.

Более широкий диапазон измерений, включая видимую и УФ-области, имеют

спектрофотометры СФ-20 и СФ-26 и фотометры ФМ-59, ФМ-85 и ФМ-99. Последние два прибора работают и в ближней ИК-области. Однако для ИК-области применяют в основном специальные приборы — спектрометры ИКС-29 и ИКС-31. Для определения коэффициента излучения 8 непрозрачных материалов пользуются терморадиометрами ТИС, ТРМ-И и тепловизором АГА-680, а коэффициента поглощения солнечного излучения cxs — альбедометром М-69.

Рис.3. Колориметр фотоэлектрический КФК-3.

Для инструментальной оценки цвета покрытий служат фильтровой колориметр ФМ-104м и компаратор цвета КЦ-2, оснащенный микро-ЭВМ.

Визуальный метод определения цвета связан со сравнением испытываемых образцов с эталонными накрасками картотеки или атласа цветовых эталонов. Имеются картотеки, разработанные в ГИПИ ЛКП и во ВНИИ технической эстетики, а также атласы цветов.

Блеск покрытий определяют с помощью фотоэлектрических блескомеров ФБ-2 [рис. 4] и ФБ-5.

Блескомер предназначен для измерения коэффициента зеркального отображения (при геометрии освещения-наблюдения 45°/45°) и коэффициента яркости (при 45°/0°) направленного светового потока от поверхности лакокрасочных покрытий в видимой области спектра с целью количественной оценки зрительного восприятия человеческим глазом степени блеска (ГОСТ 896-69) и белизны указанных покрытий.

Определение основано на измерении фототока, возникающего под действием пучка света, падающего на поверхность покрытия под углом 45⁰ и отраженного от нее.


Рис. 4. Блескомер типа ФБ-2.

Билет №7.

1. Ультрацентрифугирование.

Ультрацентрифугирование - метод разделения и исследования частиц размером менее 100 нм (макромолекул органелл животных и растительных клеток, вирусов и др.) в поле центробежных сил. Позволяет разделять смеси частиц на фракции или индивидуальные компоненты, находить молекулярную массу и ММР полимеров, плотность их сельватов. Дает возможность оценивать форму и размеры макромолекул в растворе, влияние статического давления на стабильность частиц, параметры взаимодействия типа ассоциация - диссоциация макромолекул друг с другом или с молекулами низкомолекулярных компонентов и ионами, влияние природы растворителя на конформации макромолекул и др.

Метод осуществляется с помощью ультрацентрифуг. Ультрацентрифуга (от ультра..., центр и лат. fugo — бег, бегство), прибор для разделения частиц менее 100 нм (коллоидов, субклеточных частиц, макромолекул белков, нуклеиновых кислот, липидов, полисахаридов, синтетических полимеров и пр.), взвешенных или растворённых в жидкости; это достигается вращением ротора, создающего центробежное поле с ускорением, на много порядков превышающим ускорение силы тяжести.

Первая ультрацентрифуга, предназначенная для изучения движения частиц, невидимых в световой микроскоп, была создана шведским учёным - химиком Теодором Сведбергом (Theodor Swedberg, 1884-1971) в 1923 (публикация в 1924). В этой ультрацентрифуге достигались центробежные ускорения всего до 5000 g. Она имела абсорбционную оптическую систему и использовалась для изучения движения частиц золота диаметром около 5 нм. В 1926 Т.Сведберг сконструировал первую высокоскоростную ультрацентрифугу (41000 об/мин, ускорения — до 105 g), с помощью которой проводились аналитические исследования белков в растворах (в частности, гемоглобина). В 1939 Т.Сведбергом создана аналитическая ультрацентрифуга со стальным ротором (65000 об/мин).

По назначению и конструкции ультрацентрифуги подразделяются на:

- препаративные,

- аналитические

- препаративно-аналитические.

Препаративные ультрацентрифуги снабжены угловыми роторами с гнёздами для цилиндрических пробирок, стаканов или бутылок, наклоненных под углом 20 – 40° к вертикальной оси ротора, либо так называемыми бакетными роторами со стаканами, поворачивающимися на 90° при вращении. Существуют также зональные и проточные роторы с одной большой внутренней полостью для фракционируемой жидкости. Данные ультрацентрифуги используются для выделения отдельных компонентов из сложных смесей.

Аналитические ультрацентрифуги снабжены роторами со сквозными цилиндрическими гнёздами, в которые помещены специальные прозрачные кюветы для исследуемых растворов или суспензий. Процесс перераспределения частиц в них можно наблюдать непосредственно при вращении ротора с помощью специальных оптических систем (рефрактометрических, абсорбционных). Существуют модели аналитических ультрацентрифуг, соединённых с ЭВМ, производящими автоматическую обработку экспериментальных данных.

Ультрацентрифугирование подразделяется на:

- скоростное

- равновесное.

В первом случае частицы движутся по радиусу ротора соотв. своим коэф. седиментации, в первом приближении пропорциональным массе частицы, разности плотностей частицы

и жидкости
при
частицы перемещаются от оси вращения ротора к периферии (седиментируют), при
- в сторону оси вращения (флотируют).

При равновесном ультрацентрифугировании перенос частиц по радиусу продолжается до тех пор, пока сумма химического потенциала и молярной потенциальной энергии в каждой точке системы не станет постоянной величиной, после чего распределение частиц перестанет изменяться.


Билет №7.

2. Методы измерения вязкости жидкостей: капиллярная и ротационная вискозиметрия.