На рисунке 1.9 схематически изображены морфологические образования глины и возможные типы структуры наполнителя, возникающие при взаимодействии слоистых силикатов и полимеров. Для получения нанокомпозитов необходимо разрушить всю иерархию морфологических образований глины вплоть до отдельных кристаллитов и осуществить проникновение полимера в межплоскостное пространство.
Когда полимер не может интеркалировать в пространство между слоями кристаллита, получают композит с разделенными фазами и его основные характеристики лежат в том же диапазоне, что и у обычных микрокомпозитов (рис.4). Кроме этого случая можно выделить два других типа композитов. Первый из них обладает структурой, в которой отдельные вытянутые полимерные цепи интеркалированы в межслоевые пространства глины, формируя тем самым хорошо упорядоченную многослоевую систему, собранную из чередующихся полимерных и силикатных слоев. В композитах второго типа в алюмосиликатные слои, полностью и однородно диспергированны в полимерной матрице, формируют так называемую эксфолиированную или деламинированную структуру [8].
Тип композита на основе полимеров и слоистых алюмосиликатов можно определить, методом рентгеноструктурного анализа (РСА) по угловому положению пика базального рефлекса на рентгенограмме. Сдвиг базального рефлекса в область углов дифракции меньших, чем у исходной глины, подтверждает получение интеркалированного нанокомпозита (ИН), в котором хорошо сохраняется повторяющаяся многослойная структура. Отсутствие дифракционных максимумов - либо из-за большего расстояния между слоями (превышающего 8 нм), либо из-за того, что силикатные пластинки разупорядочены, означает формирование эксфолиированного нанокомпозита (ЭН).
Рис. 1.9. Схематическое изображение морфологических образований глины и типов структуры нанокомпозитов, возникающей при взаимодействии слоистых силикатов и полимеров [48].
Оценить тип композита можно также с помощью просвечивающей микроскопии. Однако результаты, полученные этим методом, достоверны лишь при анализе большой совокупности фотографий.
Следует отметить, что характер упаковки молекул модификатора в межслоевом пространстве определяет величину расстояния между силикатными пластинами, органофильность межслоевых пространств глины, и, в конечном счёте, возможности для получения интеркалированной и эксфолиированной структуры. Однако экспериментальных работ в этой области пока недостаточно [50, 51]. Теоретические исследования, базирующиеся на данных экспериментов, в настоящее время не позволяют достоверно описать структуру адсорбционных слоев в межплоскостных пространствах глины [52-54].
1.5 Методы получения полимер-силикатных нанокомпозитов
Существует несколько методов получения полимер-слоистых силикатных нанокомпозитов [8,55]:
-смешение в растворе. Слоистые силикаты могут набухать в некоторых растворителях. В растворителе слоистый силикат расслаивается на отдельные слои, в котором также растворяется полимер (или форполимер в случае нерастворимого полимера типа полиимида). Затем полимер адсорбируется на раздвинутых силикатных листах, и после испарения растворителя (или осаждения смеси) формируется композит;
- интеркаляционная полимеризация in situ. При получении композитов этим методом слоистый силикат набухает в жидком мономере (или в растворе мономера), таким образом, что образование "полимера может происходить между слоями силиката. Полимеризация инициируется нагреванием или излучением, либо диффузией подходящего инициатора или органического инициатора или предварительно иммобилизованным в межслойном пространстве глины катализатором;
- матричный синтез. Этот метод, в котором силикаты образуются in situ в водном растворе, содержащем полимер и строительные блоки силиката, широко используется для синтеза нанокомпозитов основанных на двухслойных гидроксидах, но гораздо менее развит для слоистых силикатов. В данной методике, рост частиц происходит благодаря самоорганизации отдельных атомов в среде полимера. При этом полимер регулирует рост неорганических кристаллов. Композит формируется в результате того, что полимер застревает между силикатными слоями в процессе их роста;
- смешение в расплаве. Слоистый силикат смешивают с полимерной матрицей в расплаве. При условии, что поверхности слоев совместимы с выбранным полимером, он может проникать в межслойное пространство и образовывать либо ЭН, либо ИН материал. Смешение в расплаве позволяет перерабатывать полимеры, которые нельзя использовать в методах полимеризационного наполнения.
Первую попытку описания процессов интеркаляции макромолекул в межпакетные пространства глины с адсорбированными на силикатных пластинах ПАВ предприняли R. Vaia и Е. Giannelis [56, 57]. Авторы, основываясь на положениях статистической термодинамики и оценивая свободную энергию системы, состоящей из модифицированного слоистого силиката и расплава полимера, получили аналитические выражения для изменения внутренней энергии (вызванного появлением новых межмолекулярных взаимодействий) и энтропии (связанного с изменением конфигурации элементов системы полимер - ПАВ при интеркаляции цепей полимера и раздвижении слоев силиката). Они показали, что изменение энтропии в процессе формирования нанокомпозита происходит в результате двух причин: 1) заключение молекул полимера, раньше нахолившихся в состоянии расплава, в узкий зазор между слоями силиката; 2)изменение конфигурации цепей модификатора. Изменение энтропии модификатораположительно при интеркаляции макромолекул в межплоскостное пространство, т.к. молекулы модификатора приобретают большую конфигурационную свободу по мере увеличения межпакетного пространства, и в значительной степени зависит от поверхностной плотности привитых цепей и их длины. Изменение энтропии полимера, напротив, будет иметь отрицательное значение, поскольку макромолекулы из расплава переходят в узкий зазор и испытывают ограничивающее влияние стенок. Оценка, проведенная авторами модели, показала, что суммарное изменение энтропии системы силикат-модификатор-полимер отрицательно, а значит, формирование нанокомпозита становится неблагоприятным с точки зрения энтропийного фактора. Внутренняя энергия рассматриваемой системы складывается из парных взаимодействий трех компонентов: полимер-силикат, полимер-модификатор и силикат-модификатор. Зная характеристики матричного полимера, можно подобрать тип силиката и модификатора таким образом, чтобы система силикат-модификатор-полимер была максимально совместимой.
Для формирования термодинамически стабильного нанокомпозита необходимо, чтобы энергетические взаимодействия в системе компенсировали уменьшение энтропии. Если энергетические взаимодействия в системе слишком слабы и не позволяют преодолеть энтропийный барьер, будет происходить фазовое разделение компонентов и формироваться обычный микрокомпозит.
Авторы работ [58-60] проводили моделирование взаимодействия в системе силикат-модификатор-расплав полимера на основе теории самосогласованного поля. Взаимодействие между компонентами системы в этом подходе учитывали с помощью параметра взаимодействия Флори-Хаггинса. Вид потенциала взаимодействия определяется плотностью распределения звеньев полимера и модификатора и значениями парных параметров взаимодействия. Анализировали зависимость свободной энергии системы от длины цепи модификатора и полимера, поверхностной плотности молекул модификатора. Результаты, полученные этой группой исследователей, хорошо согласуются и дополняют положения модели усредненного поля.
Известно, что при отсутствии модификатора полимер и глина термодинамически несовместимы и при их соединении происходит фазовое разделение. Избыточное количество модификатора, так же как и его отсутствие, затрудняет проникновение полимера в межслоевое пространство.
Согласно проведенным расчетам, увеличение длины молекулы полимера способствует фазовому разделению компонентов, поскольку энтропия длинных молекул при интеркаляции в узкий зазор уменьшается в большей степени, чем более коротких. Увеличение длины цепи модификатора, наоборот, способствует формированию термодинамически стабильного нанокомпозита. В этом случае наблюдается лучшее взаимопроникновение молекул полимера и модификатора, что увеличивает конфигурационную свободу обоих компонентов.
Результаты, полученные в обоих подходах, позволяют лучше понять факторы, определяющие способность полимера проникать в межплоскостные пространства слоистых силикатов и могут служить теоретической основой по практическому получению полимер-силикатных нанокомпозитов.
1.5.1. Выбор метода и оптимальных условий получения нанокомпозитов
При создании нанокомпозитов на основе слоистых силикатов метод получения выбирают исходя, прежде всего, из таких свойств полимера, как способность растворяться в растворителях, в которых набухает глина (растворное смешение), или находиться в вязкотекучем состоянии выше температуры стеклования или плавления (расплавное смешение).
Как уже отмечалось, способность полимера интеркалироваться в межплоскостные пространства зависит от парных взаимодействий полимер-глина, полимер-модификатор, глина-модификатор и изменения энтропии системы в целом.
Проникновение полимерных молекул в межплоскостное пространство глины определяется также и условиями проведения процесса. Часто для эксфолиирования слоистых силикатов в неполярных полимерах кроме модификаторов глины используют сомодификаторы, имеющие полярные группы и, обычно, достаточно длинные алифатические «хвосты», способные проникать в полимерную матрицу.