Смекни!
smekni.com

Синтез и исследование сорбционных свойств гуанидинсодержащих полимерных нанокомпозитов (стр. 4 из 16)

Мак-Коннелл [33] несколько видоизменил структуру монтмориллонита, предложенную Гофманном и др. [27]. Он предположил, что некоторые кремнекислородные тетраэдры структуры замещены тетраэдрами (ОН)4 — что равносильно предположению о наличии пробелов в размещении атомов кремния по тетраэдрическим положениям — с соответствующей заменой атомов О группами ОН для сохранения баланса в структуре. Это должно обеспечить избыточное количество поверхностных групп ОН, необходимое для объяснения некоторых особенностей поглощения органических веществ монтмориллонитом, а также согласуется с данными дегидратации монтмориллонита. Необходимы дальнейшие исследования для подтверждения предположений Мак-Коннелла.

1.3 Органомодификация монтмориллонита

Особый интерес для получения нанокомпозитов представляют минералы, способные к разбуханию (смектиты) [6, 25, 26]. Один из представителей смектитов - монтмориллонит, характерной особенностью которого является способность набухать в некоторых растворителях и диспергироваться на отдельные нанослои при определенной обработке.

Катионы металлов, находящиеся в природном минерале, могут заменяться на другие ионы при проведении реакции ионного обмена. По способности к замещению они могут быть расположены в следующий ряд [39-41]:

А1> Са>К> [(C4H9)4N]> [(C2H5)4N]> [(СНз)4 N]>NH4>Na> Li

Как отсюда следует, четвертичные алкиламмониевые катионы могут вытеснять ионы Na+ с обменных позиций в монтмориллоните, причем увеличение числа углеродных атомов в неполярных алифатических группах способствует более эффективному вытеснению межслоевых катионов [41]. В связи с этим, чаще всего в качестве модификаторов поверхностных свойств глины используют катионные поверхностно-активные вещества (ПАВ), в которых число углеродных атомов составляет от 6 до 20.

Все глинистые минералы обладают определенной емкостью катионного обмена (ЕКО). Эта величина обозначает количество обменных катионов (выраженное в мг-эквивалентах), способных к замещению на катионы другого типа в расчете на 100 г глины. Монтмориллонит обладает самой высокой среди глинистых минералов емкостью катионного обмена (до 150мг.экв/100г).

Способность катионов металлов в межслоевых пространствах замещаться на катионные ПАВ позволяет модифицировать поверхностные свойства силикатных пластин [42]. Для придания гидрофильным глинам органофильности используют ПАВ с длинными алифатическими цепями. Модифицированная в результате хемосорбции глина (или органоглина) являясь органофильной, имеет меньщую поверхностную энергию и лучше совмещается с органическими полимерами. Когда межплоскостные катионы после ионного обмена замещены более объемными алкиламмониевыми органическими катионами, происходит также и увеличение межслоевого расстояния.

Процессы сорбции органических катионов на глинистых минералах, в том числе на монтмориллоните изучаются уже сравнительно давно [42]. Поскольку в слое силиката присутствует отрицательный заряд, катионная концевая группа алкиламмониевого катиона предпочтительней располагается на поверхности слоя, оставляя алифатическую цепь направленной от или вдоль поверхности. Как отмечено в работе [43], обмен ионов сложных органических соединений во многом отличается от обычного обмена ионов металлов, так как наряду с электростатическим взаимодействием поверхности минерала и иона, проявляется действие ван-дер-ваальсовых сил. В этой же работе указывается и на возможность образования слоев органических катионов внутри межпакетных пространств монтмориллонита. Они могут располагаться более чем одним слоем, так как одного слоя объёмных катионов может быть недостаточно для нейтрализации заряда на поверхности пластин. В результате сорбции объемных органических катионов и десорбции малых ионов натрия, происходит увеличение межплоскостного расстояния между пластинами глины [44, 45].

Межплоскостное расстояние в органоглинах также зависит от ЕКО слоистого силиката. Количество обменных позиций на поверхности силикатных пластин определяет плотность упаковки молекул модификатора.

Как видно из рисунка 6, межпакетное расстояние монтмориллонита увеличивается ступенчато в зависимости от количества атомов углерода в цепи модификатора первичного амина.


Рис.1.6. Изменение межпакетного расстояния монтмориллонита, модифицированного первичным амином, в зависимости от числа углеродных атомов в цепи амина Ио емкости катионного обмена: 1- малые ЕКО (< 90 мг·экв/100г; 2- большие ЕКО (>90 мг·экв/100г)

Для глин, имеющих различное количество обменных позиций, увеличение межпакетного расстояния при эквивалентной сорбции алифатических аминов с длиной цепи от 1 до 3 метильных групп происходит на величину ~ 0,4 нм (см. рис. 6). Это межплоскостное расстояние примерно равно диаметру алифатических цепей, которые располагаются параллельно пластинам слоистого силиката (рис. 3, а). При дальнейшем увеличении количества метильных групп в алифатических цепях вновь происходит возрастание величины межпакетного расстояния на ~ 0,4 нм при длине углеродной цепи 8-10 атомов для силикатов с малым значением ЕКО и 16-18 для силикатов с большой ЕКО (>90мг*экв/100г). Это может соответствовать переходу алкильных цепей модификатора, находящихся в межслойном пространстве от монослоя к бислою, а затем к образованию псевдотройного слоя. На рисунке 3 показано изменении структуры слоев модификатора [46]. По-видимому, алифатические цепи таких модификаторов способны образовывать бислои, также лежащие параллельно поверхности частицы.


Рис.1.7. Агрегация алкильных цепей в слоистых силикатах:а)горизонтальный монослой; б)горизонтальный бислой;в) монослой «парафинового типа» 3) бислой «парафинового типа»[46]

Авторы работы [48] предполагают, что в случае большой катионной ёмкости, молекулы модификаторов могут образовывать моно- или бислои, которые располагаются в межплоскостном пространстве под определенным углом к поверхности слоистого силиката, т.н. "парафиновый" тип упаковки, а также образовывать гибридные образования, включающие как горизонтальные, так и "парафиновые" фрагменты.

Подробное изучение процессов сорбции различных четвертичных алкиламмониевых катионов на поверхности монтмориллонита было проведено в работах [44, 47]. В работе [48] был проведен анализ структуры слоев модификатора по сдвигу частот валентных асимметрических колебаний СН2-группы. Оказалось, что внедренные цепи ПАВ существуют в состояниях, характеризующихся различной степенью упорядоченности.

По мере уменьшения плотности упаковки молекул модификатора, уменьшения длины цепи или увеличения температуры внедренные цепи образуют всё более слабо упорядоченную структуру, следствием чего является увеличение соотношения гош/транс конформеров. При определенных значениях доступной поверхности в расчете на одну молекулу оказывается, что упаковка цепей не полностью разупорядочена, а сохраняет некоторый ориентационный порядок аналогично жидкокристаллическому (ЖК) нематическому состоянию (Рис. 8). Следует отметить, что при всей логичности сделанных авторами выводов достоверность экспериментальных данных невелика, так как сдвиги частот, по которым судили об изменении упорядочения молекул, близки к разрешению спектральных приборов.

Методом молекулярно-динамического моделирования было установлено, что по мере удлинения цепи структура прослойки изменяется пошагово от неупорядоченного к более упорядоченному монослою, затем скачкообразно переходя к более беспорядочному псевдодвойному слою (Рис. 1.8).

Рис. 1.8. Модели упаковки алкильных цепей: (а) короткие алкильные цепи:

отдельные молекулы, горизонтальный монослой, (б) цепи средней длины:

плоскостная неупорядоченность и образование встречно-штыревой

структуры с формированием «псевдобислоя», (в) длинная цепь: повышенный

межслоевой порядок, жидкокристаллический тип среды [46].

Одной из причин перспективности применения глин в качестве наполнителя является потенциальная возможность перехода их частиц к наноразмерам не за счет механического дробления, а, в основном, посредством химической модификации их поверхности. Кроме этого, для обеспечения высоких физико-механических свойств нанокомпозитов полимер-глина необходима хорошая совместимость органического и неорганического компонентов, которые изначально термодинамически не совместимы.

Для достижения обеих этих целей используется модификация поверхности частиц глины посредством ПАВ. Применение ПАВ должно сформировать между частицами глины органофильные слои, которые снижают поверхностную энергию на границе раздела фаз, увеличивают расстояние между силикатными слоями и, тем самым, облегчают проникновение полимерных цепей в межплоскостные пространства глины.

Подбор ПАВ требует знания особенностей структуры глинистых минералов и индивидуален для каждого полимера.

1.4 Типы полимер-силикатных нанокомпозитов

Правильное использование глин с различной емкостью катионного обмена, подбор модифицирующих органических катионов, направленное формирование органофильных слоев для каждого метода приготовления композитов с учетом индивидуальных свойств полимерной матрицы, позволяет успешно получать нанокомпозиты нескольких типов.