Для приготовления композитов использовали достаточно концентрированную суспензию бентонита. В этой области концентраций большую роль играют силы притяжения между ребрами и плоскостями кристаллитов. Суспензия приобретает структуру карточного домика, схематически изображенную на рис. 3.2. (а)
а)
б)в) г)
Рис. 3.2. Структура суспензии глины и композитов
При механическом перемешивании происходит разрушение контакта типа край – плоскость, т.е. разрушение карточного домика (рис.3.2 в) [109-110]. Именно частично разрушенная структура фиксируется при полимеризации и образовании полимерной сетки (рис.3.2 г).
Рис.3.3. Схема образования слоистого нанокомпозита на основе алюмосиликата и полимера с низким его содержанием (справа вверху) и высоким.
Использование в качестве гидрофобизатора и модификатора в межслоевом пространстве глины гуанидинсодержащего мономера способного к дальнейшей полимеризации значительно упрощает методику получения полимерной композиции и уменьшает длительность процесса.
Изучение распределения органоглины в полимерной матрице имеет большое значение, так как свойства получаемых композитов напрямую зависят от степени распределения органоглины.
Согласно работам Джианелиса [63] процесс формирования нанокомпозита протекает через ряд промежуточных стадий. На первой стадии происходит образование тактоида – полимер окружает агломераты органоглины. На второй стадии происходит проникновение полимера в межслойное пространство органоглины, в результате чего происходит раздвижение слоев до 2-3 нм [98]. Дальнейшее увеличение расстояния между слоями (третья стадия) приводит к частичному расслоению и дезориентации слоев органоглины. Эксфолиация или расслоение наблюдается, когда полимер раздвигает слои глины на 8 – 10 нм и более.
На самом деле, в получаемых полимерных нанокомпозитах могут присутствовать все указанные структуры, что зависит от степени распределения органоглины в полимерной матрице. Расшелушенная (эксфолиированная) структура является результатом очень хорошей степени распределения органоглины.
Данные рентгеновских исследований гуанидинсодержащих композитов показали, что для композитов полное определение кристаллографических параметров затруднено, ввиду того, что в области углов 2Q=19.8-23.0° небазальные рефлексы глины экранируют пики полимера.
Поскольку в результате интеркаляции мономера в межпакетные промежутки силиката базальный рефлекс может сдвигаться в область истинно малых углов, для подробного анализа этого диапазона была получена дифрактограмма в малых углах дифракции для органоглины (глина, обработанная мономером) и одного из композитов с исходным составом 50:50 масс. %. В интервале углов 2Q от 1.0° до 2.0° рефлекс, соответствующий межплоскостному расстоянию монтмориллонита 1.5 нм, не был обнаружен для органоглины, а в композите зарегистрировано его наличие.
На основании проведенных исследований можно сделать вывод о том, что органоглина, полученная обработкой монтмориллонита гуанидинсодержащими мономерами, является полностью эксфолиированной структурой, а композиты, при небольших (примерно до 15 % масс.) степенях наполнения являются эксфолиированными, а при более высокой концентрации полимера - нанокомпозитами смешанного типа, которые содержат интеркалированные кристаллиты и эксфолиированные элементарные пакеты.
Таким образом, гуанидинсодержащие полимерные композиционные материалы были получены интеркалированием гуанидинсодержащих мономеров в слои глины и последующей их полимеризацией в присутствии радикальных инициаторов.
3.2 Особенности взаимодействия гуанидинсодержащих полимеров с глинистым минералом
Основными факторами, оказывающими влияние на процесс получения композита на основе монтмориллонита и виниловых мономеров являются концентрация мономера, инициатора, температура.
С увеличением содержания мономеров от 10 до 50 % количество привитого полимера увеличивается незначительно. Дальнейшее увеличение концентрации мономера также незначительно влияет на степень прививки даже при содержании 75 % мономера степень прививки не превышает 25 %. Видимо, при высоких концентрациях мономера в основном протекает реакция гомополимеризации. Авторы работы [4] отмечают также, что при проведении сополимеризации различных мономеров с силикагелями не получили значительного увеличения количества привитого полимера.
С увеличением концентрации инициатора от 0,02 до 0,06 моль/л, т.е. в пределах концентраций, обычно применяющихся в практике проведения радикальной полимеризации виниловых мономеров, количество привитого полимера возрастает. Однако, большое содержание инициатора > 0,04 моль/л приводит к снижению выхода конечного продукта, что вероятно, связано с трудностями, возникающими при адсорбции мономера на поверхности, содержащей избыток инициатора.
Результаты исследования продолжительности прививки мономера к бентониту показывают (табл.3.2.1.), что эффективность процесса модифицирования достигает максимальных значений за 60 минут.
Как видно из таблицы, поведение МАГ в реакциях полимеризации в присутствии монтмориллонита имеет черты отличные от поведения АГ в тех же условиях. Степень прививки МАГ к монтмориллониту выше.
Возможное объяснение большей реакционной способности МАГ заключается в стабильности образующего метакрилатного радикала, в котором осуществляется сверхсопряжение как с атомами водорода метильной группы, так и с карбонильным кислородом и гуанидиновой группой. Большая делокализация заряда карбоксильной группы в молекуле мономера МАГ подтверждается данными ЯМР1Н-спектроскопии показывающими смещение сигналов винильных протонов МАГ в более сильное поле по сравнению с АГ [129].
По всей вероятности, наблюдаемые особенности и различия в ряду рассматриваемых мономеров объясняются сложным характером вкладов различных физико-химических процессов, определяющих протекание реакции радикальной полимеризации гуанидинсодержащих мономеров акрилового ряда на поверхности и в межслоевом пространстве глинистого минерала. Вместе с тем, основной вклад в изменение эффективной реакционной способности полимеризующихся частиц вносят, как мы полагаем, ассоциативные взаимодействия между гуанидиновыми и карбоксильными группами (как внутри- так и межмолекулярные) и структурная организация соответствующих мономеров и полимеров в процессе образования нанокомпозита.
Таблица 3.2.1
Результаты взаимодействия гуанидинсодержащих соединений с монтмориллонитом*
образец | Концентрация мономера в исходном растворе, % | Концентрация инициатора, моль/л | Время, мин | Количество привитого полимера, % |
АГ | 10 | 0,02 | 60 | 5,59 |
30 | 6,21 | |||
50 | 16,67 | |||
30 | 0,01 | 60 | 5,23 | |
0,02 | 6,21 | |||
0,04 | 13,42 | |||
0,06 | 6, 57 | |||
30 | 0,04 | 10 | 8,0 | |
20 | 8,4 | |||
30 | 9,6 | |||
60 | 13,42 | |||
МАГ | 10 | 0,02 | 60 | 6,2 |
30 | 7,4 | |||
50 | 18,6 | |||
30 | 0,01 | 60 | 6,1 | |
0,02 | 7,4 | |||
0,04 | 14,8 | |||
0,06 | 6,93 | |||
30 | 0,04 | 10 | 8,6 | |
20 | 9,4 | |||
30 | 10,2 | |||
60 | 14,8 |
*Примечание. Количество полимера связанного с монтмориллонитом определяли элементным анализом на азот.
3.3.1 ИК– спектральный анализ бентонитовой глины месторождения Герпегеж
Глину месторождения Герпегеж подвергали всестороннему изучению методом ИК-спектроскопии. При этом анализировались изменения полос поглощения на спектрах этой глины после обработки кислотой (рисунок 13), обогащения некоторых фаз глины методом центрифугирования (рисунок 14) и переведения ее в натриевую форму. На рисунке 10а представлен ИК-спектр воздушно-сухого образца глины.
Содержание минерала кальцита в образцах глины Герпегеж подтверждается наличием в спектре полос в областях: 712 см-1, 874 см-1, 1431 см-1, 1796 см-1, 2513 см-1. Другая часть полос поглощения связана с монтмориллонитовой составляющей глины. Наблюдаемую интенсивную полосу поглощения с тремя ярко очерченными зубцами при 429, 468 и 519 см-1 можно отнести к деформационным колебаниям кислородо-кремниевых группировок типа Si-O-Si (429, 468 см-1) и Si-O-Al (519 см-1). Соответствующие валентные колебания этих группировок отражаются на инфракрасном спектре в виде сильной по интенсивности полосы 1037 см-1. Присутствие абсорбционной воды и гидроксильных группировок в составе глины подтверждается наличием деформационных колебаний ОН-групп молекул воды при 1625 см-1. Деформационные колебания гидроксильных групп проявляются в области 916 см-1. Валентное колебание ОН-групп молекул абсорбционной воды наблюдается в виде сильной полосы при 3439 см-1. Валентное колебание ОН-группы соответствует пику с волновым числом 3628 см-1.