В последние годы окись бария (вполне нормальная со стехиометрической точки зрения) понадобилась для изготовления так называемых керамических магнитов. Для этого смесь порошков окиси бария и железа спекают под прессом в сильном магнитном поле. Образующийся феррат бария обладает интересными магнитными свойствами и все чаще применяется в технике.
Но, пожалуй, самым важным соединением бария сегодня с полным правом можно считать его титанат, получивший мировое признание как отличный сегнетоэлектрик. Своим названием этот новый класс химических веществ обязан французскому аптекарю Э. Сеньету, который еще в середине XVII века открыл двойную калиево-натриевую соль винной кислоты - сегнетову соль, завоевавшую вскоре репутацию неплохого слабительного средства. На этом скромном поприще соль трудилась более двух с половиной столетий, пока в 1918 году американский ученый Д. Андерсон не установил, что в интервале температур от (-15) до +22 С она обладает весьма высокой диэлектрической проницаемостью, оставаясь поляризованной даже в отсутствие внешних электрических полей.
В 1944 году советский физик Б. М. Вул обнаружил незаурядные сегнетоэлектрические способности у титаната бария, который сохранял их в широком температурном диапазоне - почти от абсолютного нуля до +125ёС.
Поскольку титанат бария характеризуется большой механической прочностью и влагостойкостью и может быть получен без особых хлопот, неудивительно, что он занял среди сегнетоэлектриков одно из самых почетных мест, являясь прекрасным материалом для электрических конденсаторов. Благодаря сильно выраженному пьезоэффекту (изменению электрических характеристик под действием давления) эта соль бария нашла постоянную работу в пьезоэлементах.
В наш век - век небывалого технического прогресса - все шире становится круг химических элементов, которые претендуют на "ответственные должности" в науке, промышленности, сельском хозяйстве и других областях человеческой деятельности. Однако многие элементы с трудом делают карьеру из-за того, что их очень мало в земной коре. В этом отношении барию повезло: оболочка нашей планеты содержит 0,05% бария - в несколько раз больше, чем, например, никеля, кобальта, цинка и свинца, вместе взятых. Значит, дело за ним самим, да за учеными, которые призваны находить металлам, сплавам, соединениям новые интересные роли.
Одна из таких ролей - создание искусственных комет. Да, не удивляйтесь: выпущенные с борта космического аппарата на большом удалении от Земли пары бария превращаются в яркое плазменное облако, с помощью которого ученые осуществляют разнообразные исследования, ведут оптические наблюдения, определяют траекторию движения космических летательных аппаратов. Впервые искусственная комета была образована в 1959 году во время полета советской автоматической межпланетной станции "Луна-1". В начале 70-х годов западногерманские и американские физики, проводя совместные исследования электрического и магнитного поля Земли, выбросили над территорией Колумбии (на очень большой высоте) около 15 килограммов мельчайших частиц бария, которые образовали плазменное облако, наблюдавшееся из разных точек Америки. Вытянувшись вдоль магнитных линий земного шара, барий позволил уточнить их расположение.
В 1979 году с борта ракет, запущенных со шведского полигона в Кируне, в космическое пространство были также выброшены струи бария. Под действием солнечных лучей барий легко ионизировался и создал свечение, которое можно регистрировать на большом расстоянии с помощью сверхчувствительных телевизионных установок. Бариевое облако должно было пролить свет на некоторые процессы, связанные с полярным сиянием. Изучение характера движения облака позволит, в частности, судить об электрических полях, встречающихся на пути небесных скитальцев - ионов бария. Интересно, какие роли ждут барий завтра?