Схема безотходного производства
Исходное сырье
Производство
Отходы | Продукция 1-й стадии |
Производство
Отходы | Продукция 2-й стадии |
Производство
Отходы | Продукция 3-й стадии |
Твердые бытовые отходы (ТБО) образуются в результате амортизации предметов быта и жизнедеятельности людей (обычно их называют мусором и отбросами). Во всех странах существуют серьезные экологические проблемы, связанные с обезвреживанием и утилизацией постоянно возрастающего количества бытовых отходов. В США ежегодно образуются около 700 млн. тонн отходов (около 2,5 т на каждого американца). В Японии образуются более 100 млн. тонн бытовых отходов, в России – около 400 млн. тонн. Проблема накопления и необходимости удаления ТБО особенно остро стоит в крупных городах с населением свыше 1 млн. человек. Так, в Москве образуется около 3 млн. тонн ТБО. Только на основании химических познаний, положенных в основу производственных технологий, можно разрешить проблему переработки и утилизации ТБО.
Заключение
Выдающиеся открытия в физике в конце 19 века (рентгеновские лучи, радиоактивность, электрон) и развитие теоретических представлений (квантовая теория) привели к открытию новых (радиоактивных) элементов и явления изотопии, возникновению радиохимии и квантовой химии, новым представлениям о строении атома и о природе химической. связи, дав начало развитию современной химии. Успехи химии 20 века связаны с прогрессом аналитической химии и физических методов изучения веществ и воздействия на них, проникновением в механизмы реакций, с синтезом новых классов веществ и новых материалов, дифференциацией химических дисциплин и интеграцией химии с другими науками, с удовлетворением потребностей совренной промышленноссти, техники и технологии, медицины, строительства, сельского хозяйства и др. сфер человеческой деятельности в новых химических знаниях, процессах и продуктах. В 20 веке были сформированы новые важные направления химии, такие как радиационная химия, плазмохимия. Вместе с химией низких температур (криохимией) и химией высоких давлений, сонохимией (ультразвук), лазерной химией и др. они стали формировать новую область – химия экстремальных воздействий, играющую большую роль в получении новых материалов (напр., для электроники) или старых ценных материалов сравнительно дешевым синтетическим путем (напр., алмазов или нитридов металлов).
На одно из первых мест в химии выдвигаются проблемы предсказания функциональных свойств вещества на основе знания его структуры и определения структуры вещества (и его синтез), исходя из его функционального назначения. Решение этих проблем связано с развитием расчетных квантово-химических методов и новых теоретических подходов, с успехами в неорганическом и органическом синтезе. Развиваются работы по генной инженерии и по синтезу соединений с необычными строением и свойствами (напр., высокотемпературные сверхпроводники, фуллерены).
Все шире применяются методы, основанные на матричном синтезе, а также использующие идеи планарной технологии. Получают дальнейшее развитие методы, моделирующие биохимические реакции. Успехи спектроскопии (в т. ч. сканирующей туннельной) открыли перспективы "конструирования" веществ на молекулярном уровне, привели к созданию нового направления в химии - так называемые нанотехнологии.
За химией огромное будущее. ЕЕ нельзя бояться, а необходимо изучать и использовать все достижения химии для сохранения жизни на Земле.