Смекни!
smekni.com

Моделирование парожидкостного равновесия в четырехкомпонентной смеси ацетонтолуолн-бутанолдиметилформамид (стр. 5 из 8)

В [17] было рассмотрено взаимное расположение некоторых изомногообразий в диаграммах равновесия двухфазных многокомпонентных смесей.

1.5 Складки на скалярных полях равновесных температур двухфазных многокомпонентных смесей

Основным вопросом организации процесса разделения является определение предельно возможных составов получаемых продуктов или отдельных фракций с необходимым выходом. Для любой зеотропной многокомпонентной системы решение этого вопроса связано только с эффективностью процесса и протяженностью аппарата, в котором осуществляется разделение. Для азеотропных многокомпонентных систем появляются иные ограничения, связанные с особенностью фазовых диаграмм. В большинстве диаграмм концентрационный симплекс распадается на ряд областей дистилляции. Как было показано в [1] при бесконечном флегмовом числе границами между этими областями являются сепаратрические многообразия. Крутизна траекторий ректификации при конечных флегмовых числах больше таковой при бесконечном флегмовом числе, и потому траектории ректификации не должны выходить за пределы, определяемые сепаратрическим многообразием [18].

В работах [19-22] было показано, что границами между областями ректификации в трехкомпонентных системах являются, в частности, сепаратрисы, а сами границы бывают двух типов: сепаратрисы и граничные траектории. В [23] было отмечено, что границы между областями определяются совокупностью предельно возможных составов конечных продуктов, получаемых для множества исходных составов. При этом было подчеркнуто, что определенную роль играют складки на поверхности равновесной температуры. А также учитывали тот факт, что в ректификационной колонне температура непрерывно растет от дистиллята к кубовому продукту. В [24] определяли границу между областями ректификации в трехкомпонентных системах градиентным методом, совмещенным с поиском максимальной кривизны изотермоизобар. Границей между областями ректификации была линия наибыстрейшего спуска вдоль складки на поверхности равновесной температуры. В [25] установлено, что складки на поверхности равновесных температур, определяемые таким способом, не связаны с сепаратрическими многообразиями и не разделяют концентрационный симплекс на области развития процесса ректификации. В работах [24] и [25] определяли складку для скалярных полей равновесных температур (давлений) как «абсолютную складку».

Однако, в настоящей дипломной работе, как и в [7, 9-11, 26], каждую складку определяем по координатам, то есть относительно независимых концентраций. Складка, при этом, образуется всякий раз, когда одна из составляющих

, а именно
, где
для случая трехкомпонентной смеси. Так как градиент есть вектор, обладающий вполне определенными свойствами, то равенство нулю одной или нескольких составляющих
связано со специфическим направлением этого вектора в концентрационном симплексе. Положение вектора
легко анализировать в треугольнике Розебума, как представлено в [11]. Если движение некоторой точки происходит вдоль изотермоизобары: условие
равносильно условию
в одной точке (т. О), в то время как на всем изотермоизобарическом многообразии
, а
; точка (т. О), в которой
, идентична точке касания линии
и изотермоизобары. В этом случае вектор
, который всегда был ортогонален вектору
, имеет составляющую
, в то время как
(то есть
). Проекция вектора-градиента температуры на ось
равна нулю. Следовательно,
. Проекция же вектора
на ось
так же равна нулю (
), то есть дифференциал температуры – скалярное произведение векторов
и
. Соединив все т. О, в которых
на каждой изотермоизобаре, получим кривую, которая и будет складкой на поле равновесных температур (для случая трехкомпонентных смесей).

Известно [7], что наличие складок при

на скалярном поле равновесных температур кипения (конденсации) двухфазных многокомпонентных систем так же как и при
на скалярном поле равновесных давлений порождается азеотропией. При этом складка, как правило, начинается в точке азеотропа и может оканчиваться: в точке другого азеотропа; в точке чистого компонента; вырождаясь при приближении к какому-то элементу симплекса.

В [11] исследование складок проводили с помощью уравнения связи векторного поля нод и скалярного поля равновесных температур [3, 6, 8]. На основе анализа поведения систем классов 3.1.0-1а и 3.1.0-2 в сечениях концентрационного треугольника показано, что линия складки температур кипения и единичная

-линия не совпадают, что может служить объяснением наличия на траекториях процесса экстремума температуры, не связанного с азеотропией.

Основные свойства скалярных полей равновесных температур и единичных

-линий при атмосферном давлении изучены на примере двухфазных трехкомпонентных систем ацетон–гексан–этанол класса 3.2.0-26, которая также была исследована в [25], ацетон–метанол–вода класса 3.1.0-1а, метилацетат–хлороформ–бензол класса 3.1.0-2, бензол–циклогексан–1-пропанол класса 3.3.1-2. В качестве метода исследования выбран вычислительный эксперимент с использованием проблемно-ориентированного комплекса "CHEMCAD 5.2.0". Получены полные математические модели парожидкостного равновесия в трехкомпонентных системах. Моделирование проводилось с использованием уравнения Вильсона. В концентрационных треугольниках построены поля изотермоизобар, линии складок температурной поверхности и единичные
-линии. Авторами [9, 11] было установлено, что:

1) линии складок и единичных

-линий пересекаются только в точках азеотропов;

2) возможен случай, когда складка примыкает к ребру концентрационного треугольника, причем начинается и заканчивается на этом же ребре (система ацетон-метанол-вода);

3) количество складок в системе не зависит от количества азеотропных точек (что подтверждено примерами всех изученных трехкомпонентных систем).

Выявленные закономерности диаграмм скалярных стационарных полей температур и векторных полей нод двухфазных трехкомпонентных систем имеют практическое значение. Они в определенной степени объясняют ход траектории процесса экстрактивной ректификации бинарных смесей в присутствии разделяющего агента, которая проходит через минимум или максимум температуры.

Если построить зависимость паровой и жидкой фаз от их состава, то в силу смещения этих кривых относительно друг друга нода жидкость–пар, выраженная в относительных концентрациях, имеет конечную длину. В связи с этим относительный экстремум по температуре, обусловленный складкой на поверхности равновесных температур, не является особой точкой диаграммы и может быть пройден траекторией экстрактивной ректификации.

1.6 Экстрактивная ректификация как способ разделения многокомпонентных смесей

Создание научно обоснованных схем разделения сложных многокомпонентных систем является неотъемлемой частью решения таких важных задач химической технологии, как экологическая безопасность, ресурсосбережение, повышение качества органических продуктов. Эффективность принимаемых решений в значительной степени определяется особенностями технологии основного органического синтеза. В силу многотоннажности и непрерывности процессов даже незначительное улучшение их количественных показателей (повышение степени извлечения ценных веществ и содержания целевых компонентов в продуктовых потоках, снижение кратности рециклов и др.) дает ощутимую экономию материальных и энергетических ресурсов.