Рис. 1.1. Кривые фазового равновесия жидкость–пар бинарных зеотропных (1) и азеотропных смесей: с минимумом (2) и максимумом (3) температуры кипения.
Для многокомпонентных смесей, совместив концентрационный симплекс одной фазы на концентрационный симплекс другой, соединим равновесные фазы некоторыми отрезками, указанная степень отличия будет определяться длиной каждого отрезка. Отрезки такого типа называются равновесными нодами (например, нода жидкость–пар, нода жидкость–жидкость).
С учетом того, что энтропия жидкой фазы (1) меньше, чем энтропия паровой фазы (2), будем считать, что вектор ноды будет направлен от состава жидкости к составу пара, и наоборот. Таким образом, нода
– это некоторый вектор, получаемый как разность состава фаз: , (1.2)Противоположно направленный вектор называется ренодой.
(1.3)Очевидно, что:
(1.4)Совокупность нод образует в совмещенном концентрационном симплексе некоторое векторное поле, покрывающее весь симплекс или его часть. Данное векторное поле, которое является стационарным, то есть не зависит от времени, является геометрическим образом, отражающим физико-химическую природу рассматриваемой системы. На рис. 1.2 приведены векторные поля нод жидкость–пар для трехкомпонентных смесей.
Точки, в которых длина вектора ноды равна нулю, а направление его неопределенно, называются неподвижными точками функции отображения или особыми точками диаграммы фазового равновесия. К таким точкам относятся, например, в случае фазового равновесия жидкость–пар точки, соответствующие чистым компонентам, и точки, соответствующие бинарным, тройным, четверным и другим азеотропам. В этих точках составы равновесных фаз равны друг другу, а для случая азеотропов в соответствии с законом Гиббса–Коновалова наблюдается экстремум температуры (при закрепленном давлении) или давления (при закрепленной температуре) [2].
3.0.0-1 3.1.0-1а 3.1.0-1б 3.1.0-2
3.1.1-1а 3.1.1-1б 3.1.1-2 3.2.0-1
3.2.0-2а 3.2.0-2б 3.2.0-2в 3.2.1-1
3.2.1-2а 3.2.1-2б 3.2.1-3а 3.2.1-3б
3.3.0-1а 3.3.0-1б 3.3.0-2 3.3.1-1а
3.3.1-1б 3.3.1-1в 3.3.1-2 3.3.1-3а
3.3.1-3б 3.3.1-4
Рис. 1.2. Векторные поля нод жидкость–пар для диаграмм различных классов и видов.
Различают несколько типов особых точек, каждому из которых соответствует определенный ход дистилляционных линий. Например, для случая трехкомпонентных смесей в случае узловых точек все траектории сходятся в особой точке (устойчивый узел) или выходят из нее (неустойчивый узел). В случае седел – часть траекторий сходятся к особой точке, часть – выходят из нее и часть траекторий имеют в окрестности особой точки гиперболический ход, сначала приближаясь к ней, а потом удаляясь от нее. На рис. 1.3 показан ход дистилляционных линий в окрестностях особых точек различных типов.
(а) (б) (в)
Рис. 1.3. Особые точки траектории дистилляции в трехкомпонентных системах:
(а) – неустойчивый узел; (б) – устойчивый узел; (в) – седло.
Таковы закономерности векторного поля равновесных нод жидкость–пар. Далее рассмотрим закономерности скалярного поля равновесных температур.
Фазовое равновесие жидкость–пар многокомпонентных смесей можно рассматривать в диаграммах, отражающих зависимости скалярных свойств от вектора состава. Например, диаграмма равновесия может быть представлена полем равновесных температур кипения жидкой фазы системы при заданном давлении. На диаграммах состав–свойство для n-компонентной двухфазной системы любое свойство, выраженное некоторой скалярной величиной, не зависящей от времени, индуцирует над концентрационным симплексом непрерывное стационарное скалярное поле, структура которого усложняется с увеличением компонентности системы. Для трехкомпонентной системы диаграмма равновесия характеризуется некоторыми линиями, называемыми изотермоизобарами. Для четырехкомпонентных систем изотермоизобары являются уже некоторыми поверхностями и т.д. Скалярное стационарное поле равновесных температур может быть представлено и в векторном виде с помощью вектора-градиента. Этот вектор всегда направлен в сторону наибольшего возрастания поля (в данном случае поля температур) ортогонально к многообразию уровня. Вектор-градиент характеризуется набором частных производных величины свойства (температуры) по концентрациям компонентов:
(1.5)Производная этого градиента по времени равна нулю, что отражает стационарность рассматриваемого поля:
(1.6)Использование градиента позволяет представить скалярное поле в виде некоторых линий, в каждой точке которой направление касательной к этой линии задается градиентом, то есть мгновенная скорость продвижения по такой линии численно равна градиенту. Мгновенное изменение вектора состава, равное dX, будет также вектором, принадлежащим концентрационному симплексу и коллинеарному градиенту. Следовательно, имеем следующую функциональную зависимость:
(1.7)Или теоретически можно представить себе движение фигуративной точки в поле градиента температуры, при котором в каждой точке траектории градиент лежит на касательной прямой к этой траектории. Такое движение описывается системой уравнений вида [6]:
(1.8)Дифференциал температуры в общем виде представляется как скалярное произведение градиента температуры на вектор изменения состава одной из фаз. Для жидкой фазы:
(1.9)Согласно уравнению (1.9), равенство нулю дифференциала равновесной температуры
будет реализовываться в двух случаях:1) Вектор-градиент равновесной температуры равен нулю
, то есть равны нулю все частные производные скалярной величины по переменным концентрациям компонентов. Этот случай характеризует особую точку температурной поверхности размерности , которая может быть минимумом, максимумом, минимаксом.2) Векторы
и ортогональны друг другу, и их произведение равно нулю. Это условие соответствует движению вдоль изотермоизобарического многообразия, вдоль которого и .Уравнение Ван-дер-Ваальса–Сторонкина [7] – это математическая модель, описывающая равновесное распределение всех компонентов между фазами и устанавливающая соответствие между параметрами фазового перехода. Также это уравнение фазового обмена, связывающее фазовые эффекты (объемный, энтропийный, эффект химических потенциалов), которые отражают локальное поведение системы при переходе бесконечно малого количества одной фазы в конечное количество другой фазы.
В общем виде для двухфазной
-компонентной системы уравнение Ван-дер-Ваальса–Сторонкина записывается так [7]: (1.10)Уравнение связи между векторным полем нод и скалярным полем равновесных температур [3, 6, 8] позволяет легко анализировать фазовое равновесие для многокомпонентных смесей. Данное уравнение записывается как система уравнений в частных производных и при
имеет следующий вид: (1.11)Для случая
: , (1.12)где
– изменение энтропии при фазовом дифференциальном переходе бесконечно малого количества смеси из жидкости ( ) в пар ( );