Смекни!
smekni.com

Химические реакции (стр. 1 из 2)

Содержание.

стр.

1. Химические реакции.2. Окислительно-восстановительные реакции.3. Реакции в растворах электролитов.4. Представление о кислотах и основаниях.5. Гидролиз солей.Список литературы.

2

3

4

5

7

9

1. Химические реакции

Химические свойства веществ выявляются в химических реакциях. Химическая реакция заключается в разрыве одних и образовании других связей. Химическая реакция изображается в общем виде уравнением

aA + bB = cC + dD,

где вещества A и B, вступившие в реакцию, называют реагентами (или исходными веществами), а новые вещества C и D, образующиеся в результате протекания реакции, - продуктами (или конечными веществами). Целочисленные параметры a, b, c и d в уравнении реакции называют стехиометрическими коэффициентами.

Химические реакции классифицируются различными способами:

1) По типу взаимодействия:

реакции разложения 2HgO = 2Hg + O2

реакции соединения 2Na + Cl2 = 2NaCl

реакции замещения CuO + H2 = H2O + Cu

реакции двойного обмена CaO + 2HCl = CaCl2 + H2O

Указанные типы нередко совмещаются в более сложных реакциях. Например:

Na2CO3 + 2HCl = 2NaCl + CO2­ + H2O.

Эта реакция – одновременно и реакция двойного обмена, и реакция разложения, так как промежуточно образующаяся угольная кислота H2CO3 неустойчива и разлагается на CO2 и H2O.

2) По тепловому эффекту:

экзотермические реакции, протекающие с экзо-эффектом – выделением энергии в форме теплоты (+Q):

C + O2 = CO2 + Q,

эндотермические реакции, протекающие с эндо-эффектом – поглощением энергии в форме теплоты (-Q):

N2 + O2 = 2NO – Q.

3) По направлению протекания процесса реакции подразделяются на необратимые, которые протекают только в прямом направлении и завершаются полным превращением реагентов в продукты:

AgNO3 + NaCl = AgCl¯ + NaNO3,

и обратимые реакции, которые протекают одновременно в прямом и обратном направлениях, при этом реагенты превращаются в продукты лишь частично (т.е. реакции не идут до конца слева направо):

2SO2 + O2« 2SO3.

Необратимость химической реакции подчёркивается в уравнении знаком равенства (=) между формулами реагентов и формулами продуктов, а обратимость реакции – специальным знаком – противоположно направленными стрелками («).

4) По изменению степеней окисления реакции подразделяются на:

протекающие без изменения степеней окисления всех элементов, входящих в исходные вещества, например

NaOH + HCl = NaCl + H2O,

и окислительно-восстановительные реакции, протекающие с изменением степеней окисления всех или некоторых (или даже хотя бы одного!) элементов, например:

2Cu0 + O0 = 2Cu2+O2-,

Cu2+O2- + H0 = Cu0 + H1+O2-,

Cl0 + 2Na1+O2-H1+ = Na1+Cl1- + Na1+Cl1+O2- + H1+O2-.

2. Окислительно-восстановительные реакции

Окислительно-восстановительные реакции – это химические реакции, протекающие с изменением степени окисления элементов, входящих в состав реагирующих веществ.

Окисление – это процесс отдачи электронов атомом, молекулой или ионом. Если атом отдаёт свои электроны, то он приобретает положительный заряд, например:

Zn0 – 2e = Zn2+.

Если отрицательно заряженный ион (заряд –1), например Cl-, отдаёт 1 электрон, то он становится нейтральным атомом:

Cl- - 1e = Cl0.

Если положительно заряженный ион или атом отдаёт электроны, то величина его положительного заряда увеличивается соответственно числу отданных электронов:

Fe2+ - 1e = Fe3+.

Восстановление – это процесс присоединения электронов атомом, молекулой или ионом. Если атом присоединяет электроны, то он превращается в отрицательно заряженный ион:

S0 + 2e = S2-.

Если положительно заряженный ион принимает электроны, то величина его заряда уменьшается, например:

Mn7+ + 5e = Mn2+,

или он может перейти в нейтральный атом:

H+ + 1e = H0,

Al3+ + 3e = Al0.

Окислителем является атом, молекула или ион, принимающийэлектроны. Восстановителем является атом, молекула или ион, отдающийэлектроны.

Окислитель в процессе реакции восстанавливается, а восстановитель - окисляется.

Следует помнить, что рассмотрение окисления (восстановления) как процесса отдачи (и принятия) электронов атомами или ионами не всегда отражает истинное положение, так как во многих случаях происходит не полный перенос электронов, а только смещение электронного облака от одного атома к другому.

3. Реакции в растворах электролитов

Электролиты – это вещества, растворы которых обладают ионной проводимостью.

Поскольку электролиты в растворах образуют ионы, то для отражения сущности реакций часто используют так называемые ионные уравнения реакций. Написанием ионных уравнений подчёркивается тот факт, что, согласно теории диссоциации, в растворах происходят реакции не между молекулами, а между ионами.

С точки зрения теории диссоциации при реакциях между ионами в растворах электролитов возможны два исхода:

1. Образующиеся вещества – сильные электролиты, хорошо растворимые в воде и полностью диссоциирующие на ионы.

2. Одно (или несколько) из образующихся веществ – газ, осадок или слабый электролит (хорошо растворимый в воде).

Например, можно рассмотреть две реакции:

2Al + 2NaOH + 6H2O = 2Na[Al(OH)4] + 3H2­, (1)

2Al + 2KOH + 6H2O = 2K[Al(OH)4] + 3H2­. (2)

В ионной форме уравнения (1) и (2) запишутся следующим образом:

2Al + 2Na+ + 2OH- + 6 H2O = 2Na+ + 2[Al(OH)4]- + 3H2­, (3)

2Al + 2K+ + 2OH- + 6 H2O = 2K+ + 2[Al(OH)4]- + 3H2­, (4)

В данном случае алюминий не является электролитом, а молекула воды записывается в недиссоциированной форме потому, что является очень слабым электролитом. Неполярные молекулы водорода практически нерастворимы в воде и удаляются из сферы реакции. Одинаковые ионы в обеих частях уравнений (3), (4) можно сократить, и тогда эти уравнения преобразуются в одно сокращённое ионное уравнение взаимодействия алюминия с щелочами:

2Al + 2OH- + 6H2O = 2[Al(OH)4]- + 3H2­. (5)

Очевидно, что при взаимодействии алюминия с любой щелочью реакция будет описываться уравнением (5). Следовательно, ионное уравнение, в отличие от молекулярного, относится не к одной какой-нибудь реакции между конкретными веществами, а к целой группе аналогичных реакций. В этом его большая практическая ценность и значение, например благодаря этому широко используются качественные реакции на различные ионы.

Так, при помощи ионов серебра Ag+ можно обнаружить присутствие в растворе ионов галогенов, а при помощи ионов галогенов можно обнаружить ионы серебра; при помощи ионов бария Ba2+ можно обнаружить ионы SO2- и наоборот.

С учётом вышеизложенного можно сформулировать правило, которым удобно руководствоваться при изучении процессов, протекающих в растворах электролитов.

Реакции между ионами в растворах электролитов идут практически до конца в сторону образования осадков, газов и слабых электролитов.

Следовательно, реакции идут с образованием веществ с меньшей концентрацией ионов в растворе в соответствии с законом действующих масс. Скорость прямой реакции пропорциональна произведению концентраций ионов реагирующих компонентов, а скорость обратной реакции пропорциональна произведению концентраций ионов продуктов. Но при образовании газов, осадков и слабых электролитов ионы связываются (уходят из раствора) и скорость обратной реакции уменьшается.

4. Представление о кислотах и основаниях

Определения кислот и оснований с точки зрения теории диссоциации были даны С. Аррениусом.

Кислотой называется соединение, образующее при диссоциации в водном растворе из положительных ионов только ионы водородаH+. В соответствии с этим определением к кислотам относятся, например, HCl, H2SO4, HNO3, H2S.

Основанием называется соединение, образующее при диссоциации в водном растворе из отрицательных ионов только гидроксид-ионыOH-. По современной номенклатуре основания принято называть гидроксидами элементов с указанием степени окисления: NaOH – гидроксид натрия, KOH – гидроксид калия, Ca(OH)2 – гидроксид кальция, Cr(OH)2 – гидроксид хрома (II), Cr(OH)3 – гидроксид хрома (III).

Гидроксиды металлов принято делить на две группы: растворимые в воде (образованные щелочными и щелочноземельными металлами) и нерастворимые в воде. Основное различие между ними заключается в том, что концентрация ионов OH- в растворах щелочей достаточно высока, для нерастворимых же оснований она определяется растворимостью вещества и обычно очень мала. Тем не менее небольшие равновесные концентрации иона OH- даже в растворах нерастворимых оснований определяют свойства этого класса соединений.

После Аррениуса было показано, что определение кислот и оснований в терминах теории электролитической диссоциации не охватывает всего многообразия кислотно-основных свойств веществ. Дальнейшее развитие химии потребовало уточнить и дополнить определения кислот и оснований.