Смекни!
smekni.com

Элементарные стадии химических реакций основы теории (стр. 2 из 3)

(
) (12)

Равенство Dm = DG = –А = 0 означает и равенство скоростей прямой и обратной реакции W+ = W.

- Принцип детального равновесия (ПДР) определяет статистическое соотношение между константами скорости прямого (k+) и обратного (k) элементарного процесса в условиях МБР, как константу равновесия этого процесса (k+/k = K). ПДР следует из ПМО и равенства скоростей W+ = W в точке химического равновесия (

). ПДР есть макроскопическое проявление ПМО. Взяв в качестве постулата принцип микроскопической обратимости при равновесии в форме W+ = W, получим ПДР и обратно, положив k+/k = K в качестве постулата, приходим к равенству W+ = W при равновесии. Например, запишем для реакции (9)

(13)

(14)

Примем k+/k = K, тогда

, т.е.

(15)

Из (15) следует, что при

W+ = W.

Рассмотренный вывод справедлив для случая идеальных газов и идеальных растворов. Из ПМО следует ряд важных следствий, касающихся механизмов сложных реакций. Приведем одно из них – сложная реакция в прямом и обратном направлениях проходит через те же самые ЭС и интермедиаты.

- Закон (уравнение) Аррениуса описывает фундаментальное свойство константы скорости ЭС в условиях МБР – экспоненциальную зависимость от температуры

(16)

Экспериментально, уравнение (16) было получено Худом в 1885 г. Зависимость такого вида была предсказана Вант-Гоффом в рамках равновесной термодинамики (1883 г.) и обоснована Аррениусом в рамках статистической физики (1889 г.). Классический механизм бинарных соударений молекул как упругих шаров приводит к выражению

(17)

С учетом необходимой ориентации молекул получим простейшую форму уравнения

(18)

где p – стерический фактор, Z0 – фактор соударений или общее число соударений. Энергия Е – энергия активации ЭС в уравнениях (17 – 18) есть разность между средней энергией реагирующих частиц и средней энергией всех частиц.

Экспоненциальный множитель в уравнениях выражает долю “активных” столкновений, т.е. тех столкновений, энергия которых равна или выше энергии барьера Е. Такое выражение – следствие того, что основной вклад в Еакт в газовой фазе вносит поступательное движение молекул А и В.

Величины предэкспонентов в уравнениях (16) и (17) для мономолекулярных (АМ), бимолекулярных (АБ) и тримолекулярных (АТ) реакций составляют 1013 сек–1, 1010–11 л·моль-1·сек–1 и 106 – 108 л·моль-2·сек–2, соответственно.

В рамках теории переходного состояния (или активированного комплекса) константа скорости ЭС (9)

, (19)

где

– частота перехода через барьер, сек–1, c – трансмиссионный коэффициент, определяющий долю активированных комплексов, переваливающих через барьер,
– термодинамическая константа равновесия образования активированного комплекса в условиях МБР всех частиц, gi – коэффициенты активности реагентов и активированного комплекса
.

(20)

Из общих принципов, важных для химической кинетики и полезных для определения статуса химической реакции как элементарной стадии, отметим еще два принципа.

Принцип независимости химических реакций.

Одновременное протекание множества ЭС в реагирующей системе подчиняется принципу (постулату) независимости химических реакций (В.Оствальд): все элементарные химические реакции протекают независимо. Связь между реакциями осуществляется на уровне материальных балансов, за счет изменения концентраций реагентов.

Согласно этому принципу, прямая и обратная элементарные реакции также протекают независимо, и это позволяет установиться химическому равновесию (см. ПМО).

- Принцип наименьшего движения Райса и Теллера. Согласно этому принципу, ЭС будет протекать быстро, с низкой Eакт, если в ходе этой ЭС:

– происходит наименьшее движение ядер, т.е. движение с минимальным изменением координат ядер;

– происходит наименьшее движение электронов, т.е. такое, при котором изменение электронных оболочек не приводит к изменению валентного состояния.

Если в системе происходит незначительное изменение координат ядер, то это означает, что термы реагентов и продуктов близки. А чем ближе термы, тем ниже, в общем случае, величина барьера (Eакт). Однако, это не всегда так. Путь наименьшего движения может и не совпадать с путем наименьшей энергии. Условие наименьшего движения электронов более универсально. В случае мономолекулярных реакций, например, это условие означает, что электронное строение реакционного центра реагирующей молекулы должно быть близко к электронному строению активированного комплекса для того, чтобы величина барьера (или

) была небольшой.

Энергетические правила отбора элементарных стадий

Энергетические правила отбора ЭС рассматривают случаи, когда причиной больших значений

являются термохимические особенности ЭС.

- Эндотермические ЭС. В этом случае величина

определяет нижний предел Еакт, поскольку в подавляющем большинстве случаев максимумы на кривых потенциальной энергии и свободной энергии расположены при одном и том же значении координаты реакции. В случае, если
велика, например
= 40000 кал/моль, а типичная величина предэкспонента бимолекулярной реакции SN2-типа 1011 л×моль–1×сек–1 (интервал значений А 1010–1012 л×моль–1×сек–1), величина константы скорости k составит при 298 К

л×моль–1×сек–1.

Для того, чтобы скорость стадии (Wj) была не ниже 0,01 моль×л–1×ч–1 (практически приемлемая скорость), произведение концентраций реагентов в реакции типа (6) должно равняться

моль2×л–2,

что, естественно, нереально. При этом же значении скорости для CACB = 10–4 моль2×л–2k = 2,8×10–2 л×моль–1×сек–1, откуда Еакт@ 17000 кал/моль.

Таким образом, в зависимости от температуры реакции и ожидаемой скорости стационарного или квазистационарного процесса можно задать ограничения на величину

при выборе какой-либо реакции на роль ЭС.

Использование величины

в качестве термодинамического критерия в случае ЭС не является столь же жестким, как для оценок реализуемости брутто-процесса (итоговой реакции). В последнем случае для выбора условий реакции (P, T) оценивают
, Kравн и равновесный выход продукта, который из любых соображений должен быть большим. В случае ЭС образования промежуточного соединения Х

(21)

допустимой концентрацией Х является такая, которая обеспечит положительное сродство (А > 0, Dm < 0) первой стадии и достаточную скорость образования Р на второй стадии, зависящую также и от k2.

W1 > 0 при

В стадии образования Х (21)

.

В рассмотренном примере происходит кинетическое сопряжение двух ЭС через общий интермедиат Х, позволяющее проводить процесс синтеза продукта Р, с термодинамически невыгодной первой стадией. Сопряжение первой термодинамически невыгодной стадии (

или даже
, т.е. А < 0) с быстрой второй смещает равновесие первой стадии вправо или даже меняет ее направление, увеличивает А и поэтому разность
в пределе вырастает до величины
.