Смекни!
smekni.com

Основы радиохимии и радиоэкологии (стр. 57 из 63)

могут найти применение в качестве ядерного топлива.

11.14 ТРАНСАКТИНОИДЫ

Трансактиноидные элементы характеризуются заполнением 6d и 7s – уровней атома. К ним относятся элементы, начиная со 104 и кончивая 118. В соответствии с актиноидной гипотезой последним из 5 f элементов должен быть элемент №103 лоуренсий (5f14 6d1 7s2 ).

Основным методом получения важнейших изотопов 104-106-го элементов является облучение актиноидов Pu, Am 96Cm, 97Bк, 98Cf ускоренными тяжелыми ионами углерода, кислорода и неона. Принципиально важным, с этой точки зрения, должно было оказаться открытие элемента №104 и изучение его свойств. Это позволило бы подтвердить или опровергнуть актиноидную гипотезу. Элемент № 104 был синтезирован в 1964 году в Дубне группой Флерова, облучением 242Pu ядрами 22Ne

Pu+
Ne®
Db+ 4 10n

Первоначально элемент был назван курчатовием, а в последствие дубнием. В настоящее время получены изотопы дубния с массовыми числами 257-261. Их периоды полураспада от 11 мин у курчатовия 258 до 70 с у курчатовия 261. Элемент был идентифицирован чешским ученым Зварой с помощью специальных экспрессных методов анализа. Было показано, что дубний резко отличается по своим свойствам от предыдущих элементов. Как было обнаружено в химическом отношении дубний ведет себя подобно гафнию и элементам 1У В группы; его электронная конфигурация 5f14 6d2 7s2. Соткрытием дубния стало ясно, что он, не являясь актиноидом ведет себя подобно лантаноидам.

Дубний и более тяжелые элементы можно назвать трансактиноидами.

Чуть позже были синтезированы элементы с атомными номерами 105-107.

Эти элементы являются аналогами тантала (дубний, вольфрама (сиборгий) и рения( борий).

Br(
О, 5n)
Db
.

Сечения активации этх реакций очень малы и резко уменьшаются с возрастанием атомного номера образующегося составного ядра. Более благоприятным с этой точки зрения является использование в качестве материала мишени ядер свинца и висмута, а качестве бомбардирующих частиц- ионов хрома и более тяжелых элементов. Использование такой комбинации позволило получить элементы с порядковыми номерами 106 и 107:

Период полураспада 7.10-3 с.

Отправным моментом при получении еще более тяжелых элементов является гипотеза о существовании островов стабильности, предложенная еще в 1925 году немецким ученым Р. Свинне. Сущность этой гипотезы заключается в том, что элементы, ядра которых содержат магическое число нейтронов и протонов, соответствующее заполненным нейтронным или протонным оболочкам, должны обладать повышенной устойчивостью к альфа распаду и спонтанному делению. Эта гипотеза инициировала многочисленные теоретические и экспериментальные исследования.

В основе методов химической идентификации при синтезе и поиске в природе сверхтяжелых элементов должно лежать прогнозирование химических свойств на основании ожидаемого их положения в периодической системе Менделеева.Например предполагается, что элементы с порядковыми номерами 112-118 должны быть относительно более летучими, чем элементы с пор. Номерами 80-86 от ртути до радона. Поэтомку для отделения элементов 112-118 от актиноидов и поиска их среди продуктов ядерных реакций целесообразно использовать метод возгонки.

Экспериментальные исследования включают попытки искуственного получения короткоживущих изотопов сверхтяжелых элементов особенно в области 110-114

При этом в качестве мишени используются 94Pu, 95Am, 96Cm, 97Bк, 98Cf, а в качестве бомбардирующих частиц кальций-20, хром-26 и цинк-30.

Успехи в синтезе трансурановых элементов и синтез трансактиноидов поставили вопрос впрямую о верхней границе периодической системы.

Синтез нептуния и плутония позволил выделить в проблеме конца системы два аспекта: о естественной границе и о возможном пределе синтеза искусственных элементов. Можно предполагать, что на Земле последним природным элементом является плутоний.

Если рассматривать периодический закон в космическом масштабе то проблема конца системы становится неоднозначной и непосредственно смыкается со вторым аспектом- пределом устойчивости атомных ядер.

Достижения современной ядерной физики и химии позволяют более определенно судить и о возможности синтеза новых искусственных сверхтяжелых элементов. Эта проблема также неоднозначна.


ГЛАВА 12. ХИМИЯ РАДИОАКТИВНЫХ ЭЛЕМЕНТОВ

Радиоактивными называются химические элементы, все изотопы которых радиоактивны, то есть совокупность радиоактивных атомов с одинаковым зарядом ядра. Известно, что в настоящее время можно получить радиоактивные изотопы практически всех элементов периодической системы, но такие элементы не принято называть радиоактивными. В основном радиоактивными элементами

В основном радиоактивными являются тяжелые элементы, расположенные в конце периодической системы после висмута. Среди элементов периодической системы - висмут последний практически не радиоактивный элемент. И он же открывает шеренгу тяжелых элементов - естественных альфа – излучателей. Тонкими экспериментами установлено, что стабильность висмута - кажущаяся. В действительности же ядра висмута иногда « гибнут». Период полураспада основного природного изотопа висмута 209Bi –более 2·1018 лет. Это примерно в полмиллиарда раз больше возраста нашей планеты. Принято считать висмут последним стабильным элементом периодической системы элементов Д.И. Менделеева., поскольку у него достигается предельное соотношение числа нейтронов и протонов (N/Z=126/83=1,518 , еще обеспечивающее стабильность ядра. У элементов с Z> 83 число нейтронов слишком велико и начинает сказываться нестабильность самого нейтрона. Лишь два элемента - технеций (№ 43) и прометий (№61)- не подчиняются этому правилу. Их нестабильность связана с другим обстоятельством. Отсутствие в природе технеция и прометия и всех элементов после урана связано с двумя причинами. Во - первых, их периоды полураспада меньше, чем возраст Земли. И, во-вторых, эти элементы не являются членами естественных радиоактивных рядов, поэтому их запас не возобновляется за счет радиоактивного равновесия. Кроме того, отсутствие стабильных изотопов этих двух элементов обусловлено квантово - механическими правилами отбора.

Химия радиоактивных элементов отличается от химии нерадиоактивных элементов теми особенностями,о которых упоминалось выше. В природных объектах и при искусственном получении радиоактивные элементы находятся в сверхнизких концентрациях, поэтому изучение их свойств осуществляется обычно с использованием специфических методов. Лишь уран и торий с первых лет их открытия изучались методами классической химии. В последние годы появилась возможность изучения таких радиоактивных элементов, как нептуний, плутоний, технеций, полоний и некоторых других в аналитических количествах.

Радиоактивные элементы делят на природные и искусственные. К природным относятся элементы с порядковыми номерами от 84 до 92: уран, торий и продукты их распада, полоний, астат, радон, франций, радий, актиний, и протактиний.

К искусственным радиоактивным элементам относят технеций, прометий, и так называемые, трансурановые элементы с порядковыми номерами от 93 до 110: нептуний, плутоний, америций, кюрий, берклий, калифорний, эйнштейний (№99), фермий, менделеевий (№ 101), нобелий (№ 102), лоуренсий (№ 103) , дубний (№ 104), жолиотий (№ 105), резерфордий (№ 106), борий (№ 107), ганий (№ 108), мейтнерий (№ 109), унуннилуй (№110) и т. д.

Элементы от актиния (№ 89) до лоуренсия (№ 103) составляют группу, которую называют актиноидами.

Деление радиоактивных элементов на естесственные и искусственные условно. Астат впервые был получен искусственно, позже его короткоживущие изотопы были обнаружены в семействах урана- 238, урана-235 и тория-232, Искусственный элемент плутоний в концентрациях 10-14г на 1 г урана находится в рудах урана. Радиоактивные изотопы всех естественных элементов получены искусственно.

По своей химической природе радиоактивные элементы не относятся ни к определенному периоду, ни к определенной группе элементов периодической системы. Среди них имеются sp – элементы (франций, радий, полоний, радон, астат), d – элементы (технеций, элементы с Z ≥ 104), а также f – элементы (прометий, элементы с Z = 89 ÷ 103).

Для понимания и изучения химии радиоактивных элементов чрезвычайно важное значение имеет знание свойств и поведения соответствующих стабильных аналогов.

Описание радиоактивных элементов обычно проводится по следующей схеме:

положение в периодической системе;

история открытия;

физические свойства;

химические свойства;

методы выделения;

методы определения;

применение.

В основе предлагаемой последовательности изложения свойств радиоактивных элементов лежит увеличение их порядкового номера.