Процесс комптоновского рассеяния заключается в том, что фотон передает лишь часть своей энергии электрону, чаще всего внешнему, слабо связанному, а вместо первичного γ – кванта появляется рассеянный γ – квант с меньшей энергией.
Вероятность комптоновского рассеяния пропорциональна Z вещества поглотителя и убывает с ростом энергии фотонов, но медленнее, чем вероятность фотоэффекта. При комптоновском рассеянии преобладает направление вылета электронов отдачи вдоль первоначального направления движения γ – кванта. Начиная с энергии 0,6 МэВ, комптоновское рассеяние, даже при прохождении через слои тяжелых элементов, преобладает над фотоэффектом. Явление Комптона также сопровождается ионизацией среды, в которой распространяется гамма – излучение.
5.3.3 ОБРАЗОВАНИЕ ЭЛЕКТРОН-ПОЗИТРОННОЙ ПАРЫ
Наряду с фотоэффектом и эффектом Комптона существует третий вид взаимодействия γ – квантов с веществом - рождение электрон-позитронной пары.
Образование пары происходит при взаимодействии электромагнитного поля фотона с электрическим полем ядра. При этом фотон исчезает, а его энергия превращается в энергию покоя двух новых частиц электрона и позитрона. Этот процесс может происходить, если энергия γ – квантов больше 1,02 Мэв (массы покоя обеих частиц). Вероятность этого эффекта пропорциональна Z2 и при возрастании Eγ cначала быстро увеличивается, а затем скорость нарастания уменьшается.
5.3.4 КОГЕРЕНТНОЕ РАССЕЯНИЕ
В случае когерентного рассеяния (бреговского, релеевского рассеяния) гамма –излучение поглощается и немедленно вновь испускается атомом без изменения энергии, но в другом направлении. Когерентно рассеяние излучение может давать интерференционные картины, поэтому этот процесс, как и рентгеновское излучение, используют для структурного анализа. Вероятность когерентного рассеяния увеличивается пропорционально квадрату атомного номера поглотителя и уменьшается с ростом энергии гамма- квантов. Например, в свинце доля когерентного рассеяния составляет 20% полного поглощения γ – излучения с энергией 0,1 МэВ и снижается с увеличением энергии.
5.3.5 ОСЛАБЛЕНИЕ ГАММА-ИЗЛУЧЕНИЯ В ВЕЩЕСТВЕ
При прохождении γ –лучей через вещество происходит потеря энергии за счет различных процессов: фотоэффекта, комптоновского рассеяния в результате чего их интенсивность постепенно падает. Понятие о пробеге γ – лучей имеет совершенно другое значение, чем в случае заряженных частиц. Поэтому здесь не существует понятия величины пробега.
С количественной стороны ослабление пучка фотонов описывается такой же формулой, как и для β – лучей, то есть подчиняется экспоненциальному закону.
, или , (5.15)где
- доля фотонов, которые остаются в пучке после прохождения слоя поглотителя толщиной d ( кг/м2);μ′γ(м-1) линейный, а μγ (м2/кг) массовый коэффициенты ослабления γ – излучения, где
.Коэффициент ослабления представляет собой сумму коэффициентов фотоэлектрического поглощения μф, комптоновского рассеяния μк и образования пары μр. Для массового коэффициента ослабления можно записать:
μм= μф + μ к + μр.
Таким образом, во всех трех процессах взаимодействия первичного фотона с веществом часть энергии преобразуется в кинетические энергии электронов и позитронов, а часть - в энергию вторичного фотонного излучения.
Поэтому коэффициент линейного ослабления потока фотонов
можно записать в виде: = п + s п - линейный коэффициент передачи энергии излучения. Он определяет долю энергии -излучения, переданную электронам и позитронам в слое вещества, s - линейный коэффициент рассеяния, он определяет долю энергии -излучения, преобразованную в энергию вторичного -излучения.Так как конечного пробега в веществе для γ – излучения не существует, проникающую способность γ – излучения характеризуют толщиной слоя половинного ослабления
µ´= или µ=
Изучая ослабление γ – квантов в зависимости от толщины поглотителя можно оценить энергию γ – квантов. Это очень неточный метод. В настоящее время для этой цели используют сцинтилляционную или полупроводниковую γ – спектрометрию.
Гамма – излучение за счет вторичных электронов вызывает ионизацию, которая обнаруживается также как и ионизация при β – излучении. За счет ионизации γ - излучение может вызвать и химические изменения в веществе, которые аналогичны изменениям, вызываемыми заряженными частицами.
Несмотря на разнообразие процессов взаимодействия γ – излучения с веществом вероятность их сравнительно мала. Поэтому γ – излучение слабо поглощается веществом. Так толщина слоя 220 г/см2 ( 24 –х томный словарь) ослабляет интенсивность гамма-квантов в 106 раз.
Таблица 5. 3.Линейные коэффициенты передачи
п и линейные коэффициенты ослабления , в различных средах, см-1Энергия -квантов МэВ | Вода | Алюминий | Свинец | |||
п | п | п | ||||
0.1 | 0.0253 | 0.171 | 0.1002 | 0.444 | 24.494 | 60.0 |
0.2 | 0.0299 | 0.137 | 0.0742 | 0.323 | 6.645 | 11.8 |
0.5 | 0.0330 | 0.097 | 0.0775 | 0.228 | 1.022 | 1.72 |
1.0 | 0.0310 | 0.0706 | 0.0726 | 0.166 | 0.435 | 0.79 |
2.0 | 0.0260 | 0.0493 | 0.0613 | 0.117 | 0.218 | 0.51 |
5.0 | 0.0189 | 0.0302 | 0.0486 | 0.075 | 0.308 | 0.49 |
10.0 | 0.0154 | 0.0221 | 0.0451 | 0.062 | 0.372 | 0.60 |
5.4 Взаимодействие нейтронов с веществом
Нейтроны, как правило, не возникают при радиоактивном распаде, но они могут образовываться в качестве вторичных частиц при различных ядерных реакциях, на чем и основаны все способы их получения.
Из-за отсутствия электрического заряда нейтроны практически не взаимодействуют с атомными электронными оболочками, что обусловливает их высокую проникающую способность, то есть, нейтроны могут проходить через толстые слои вещества с минимальными потерями.
Это же обстоятельство позволяет нейтронам при любых энергиях сближаться с атомными ядрами и вступать с ними во взаимодействия.
Основными процессами, приводящими к ослаблению потока (пучка) нейтронов, являются процессы радиационного захвата, поглощения и рассеяния нейтронов при столкновении с ядрами атомов.
Роль того или иного процесса в ослаблении нейтронного излучения существенно зависит от энергии налетающих нейтронов. Поэтому обычно нейтроны делят на отдельные энергетические группы - тепловые, медленные и быстрые нейтроны. Границы этих энергетических групп условны (табл.5.4).
Таблица 5. 4. Классификация нейтронов по энергии
Типы нейтронов | Энергия нейтронов, эВ |
Ультра холодные | <10-6 |
Холодные (медленные) | 10-6 – 0,005 |
Тепловые нейтроны | 0,005 – 0,5 |
Надтепловые | 0,5 - 103 |
Резонансные | 103 - 105 |
Быстрые нейтроны | 105 - 108 |
Сверхбыстрые | > 108 |
В среде из легких ядер нейтроны могут передавать практически всю свою энергию в результате одного столкновения, если столкновение лобовое. Для быстрых нейтронов наиболее важным результатом взаимодействия являются упругие (n,n) и неупругие (n,n') столкновения с атомными ядрами.
Для медленных и тепловых нейтронов основным процессом, определяющим ослабление нейтронного потока, является захват (поглощение нейтрона ядром атома среды (мишени).