Смекни!
smekni.com

Способы подготовки и очистки газов (стр. 1 из 3)

Министерство образования Российской Федерации

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Факультет химико-технологический

Кафедра химической технологии топлива

КОНТРОЛЬНАЯ РАБОТА

По дисциплине

«Химическая технология нефти и газа»

СПОСОБЫ ПОДГОТОВКИ И ОЧИСТКИ ГАЗОВ

Томск 2009


ВВЕДЕНИЕ

В основную группу процессов очистки и переработки газов входят следующие:

- Сепарация конденсата – отделение жидкой фазы, выносимой газом из скважины;

- Сепарация капельной жидкости после отделения основной её части на ступени сепарации конденсата;

- Отделение вредных примесей – сероводорода и диоксида углерода;

- Глубокая осушка газа от влаги охлаждением до точки росы (минус 30 °С и ниже);

- Отбензинивание газа - удаление из него углеводородовот пропана и выше;

- Извлечение гелия.

К вредным примесям газа относятся ядовитые и корозионно-активные серосодержащие соединения и негорючие инертные газы, снижающие теплоту сгорания углеводородного газа.

В общем случае в углеводородном газе могут содержаться такие серосодержащие соединения, как сероводород, серооксид углерода, сероуглерод, меркаптаны, а в газовом конденсате – также сульфиды и дисульфиды.

В состав инертных газов входят диоксид углерода, азот и гелий.


1. СПОСОБЫ ОЧИСТКИ УГЛЕВОДОРОДНЫХ ГАЗОВ ОТ Н2S, СO2 И МЕРКАПТАНОВ

Для очистки природного газа от Н2S и С02 применяют различные процессы, которые можно разбить на следующие группы:

• хемосорбционные процессы, основанные на химическом взаимодействии Н2S и С02 с активной частью абсорбента;

• процессы физической абсорбции, в которых извлечение кислых компонентов происходит за счет их растворимости в органических поглотителях;

• комбинированные процессы, использующие одновременно химические физические поглотители;

• окислительные процессы, основанные на необратимом превращении поглощенного сероводорода в серу;

• адсорбционные процессы, основанные на извлечении компонентов газа твердыми поглотителями-адсорбентами (молекулярные сита, активированные угли и др.)

Выбор процесса очистки природного газ от сернистых соединений зависит от многих факторов, основными из которых являются: состав и параметры сырьевого газа, требуемая степень очистки и область использования товарного газа, наличие и параметры энергоресурсов, отходы производства и др.

Анализ мировой практики, накопленной в области очистки природных газов, показывает, что основными процессами для обработки больших потоков газа являются абсорбционные с использованием химических и физических абсорбентов и их комбинации. Окислительные и адсорбционные процессы применяют, как правило, для очистки небольших потоков газа, либо для тонкой очистки газа.

К абсорбентам, используемым в промышленности, предъявляются следующие требования:

• недефицитность

• высокая поглотительная способность

• низкая упругость пара

• низкая вязкость

• низкая теплоемкость

• нетоксичность

• селективность (при селективной абсорбции)

Из хемосорбентов наиболее широко применяют алканоламины. Использование химических растворителей основано на химической реакции между хемосорбентом и кислыми компонентами. Максимальная поглотительная способность водных растворов химических абсорбентов ограничена стехиометрией.

Наиболее известными этаноламинами, используемыми в процессах очистки газа от Н2S и С02 являются:

• моноэтаноламин (МЭА)

• диэтаноламин (ДЭА)

• триэтаноламин (ТЭА)

• дигликольамин (ДГА)

• диизопропаноламин (ДИПА)

• метилдиэтаноламин (МДЭА)

Наибольшее практическое применение получили моно- и диэтаноламин. Использование ДЭА особенно целесообразно в тех случаях, когда в исходном газе наряду с Н2S и С02 содержатся COS и СS2, которые вступают в необратимую реакцию с МЭА, вызывая его значительные потери. Для селективного извлечения Н2S в присутствии СO2 используют третичный амин - метилдиэтаноламин.

В физических процессах извлечение кислых компонентов из газа происходит за счет физического растворения их в применяемом абсорбенте. При этом, чем выше парциальное давление компонентов, тем выше их растворимость. Из физических абсорбентов промышленное применение для очистки газов нашли такие, как:

• метанол

• N-метилпирролидон

• алкиловые эфиры полиэтилен гликоля

• пропиленкарбонат

Очистка углеводородных газов этаноламинами

Физико-химические свойства этаноламинов и их водных растворов

Алканоламины (аминоспирты, оксиамины) можно рассматривать как производные аммиака, в котором один или несколько атомов водорода замещены на спиртовой радикал или спиртовой и углеводородный.

где R - спиртовой радикал, например С2Н4ОН; R2, R3 - либо спиртовой, либо углеводородный радикал, либо Н+.

По степени замещения атомов водорода при атоме азота алканоламины делятся первичные, вторичные и третичные.

Первичные


Вторичные

Третичные

Алканоламины содержат по крайней мере одну гидроксильную (-ОН) и одну аминогруппу


Присутствие гидроксильной группы снижает давление насыщенных паров и повышает растворимость амина в воде, а аминогруппа придает водным растворам щелочность, необходимую для взаимодействия с Н2S и СO2, которые в водной среде диссоциируют с образованием слабых кислот.

Алканоламины - это бесцветные, вязкие, гигроскопичные жидкости, смешивающиеся с водой и низкомолекулярными спиртами во всех соотношениях; они почти нерастворимы в неполярных растворителях.

Безводные алканоламины применяют, как правило, в виде водных растворов. Концентрация амина в растворе может изменяться в широких пределах, ее выбирают на основании опыта работы и по соображениям коррозии оборудования.

Химизм взаимодействия Н2S, CО2 и других компонентов с этаноламинами.

Алканоламины, будучи щелочами, легко вступают в реакцию с кислыми газами Н2S (СO2), образуя водорастворимые соли. При этом протекают следующие реакции:

Н2S + [Амин] <—> [Амин х Н]++НS+ (мгновенно)

СO2+2х [Амин] <—> [Амин х Н]++ [Амин х СОО]- (быстро)

СO2+Н2O <—> Н2СO3 (медленно)

Н2СO3 <—> Н++ НСO3- (быстро)

НСO3- <—> Н++ СO3- (быстро)

[Амин] + Н+ <—> [Амин х Н]+ (быстро)

Все амины реагируют с Н2S одинаковым образом с образованием гидросульфида или сульфида амина, причем реакция классифицируется как мгновенная.

Первичные и вторичные амины могут реагировать с СO2 с образованием карбамата (соли замещенной карбаминовой кислоты - амин*СОО-*Н+), которая трактуется как быстрая реакция второго порядка. Кроме того, с СO2 образуются карбонаты и бикарбонаты аминов, но образованию их предшествует медленная реакция растворения СO2 в воде с образованием угольной кислоты Н2СO3. Считается, что при умеренных степенях карбонизации амина (до 0,5 моль СO2/моль амина) преимущественно протекает быстрая реакция образования карбамата. Карбаматы аминов - нестойкие соединения и в слабощелочной среде они медленно разлагаются с образованием бикарбоната (на примере вторичного амина):

R2NCOOR2NH2 + H2O <—> R2NH + R2NH2HCO3

где R – HOCH2CH2

У третичного алканоламина нет подвижного атома Н+ в аминовои группе ( N -), поэтому становится невозможным протекание прямой и быстрой реакции с СO2 по карбаматному типу, а взаимодействие осуществляется через предварительную и медленную стадию образования и диссоциации угольной кислоты:

СО2+Н2О <—> Н2СО3; Н2СО3 <—> Н++НСО3-

[Амин]+ Н++ НСО- <—> [Амин х Н]+х НСO3-

Конечными продуктами реакции являются бикарбонат и карбонат. Таким образом, разница в скоростях реакций третичных аминов с Н2S (мгновенная реакция) и СO2 (медленная реакция) гораздо значительнее, чем для первичных и вторичных аминов. Это позволяет использовать на практике третичные амины для селективного извлечения Н2S из смесей его с СO2.

Реакционная способность алканоламинов изменяется в ряду: первичные > вторичные > третичные и коррелируется с их щелочностью. Диоксид углерода образует с алканоламинами различные побочные продукты. Механизм их образования изучен не полностью.

Часть из них на стадии регенерации абсорбента разрушается и снова выделяет алканоламин, другая часть нерегенерируется, что является одной из причин потерь амина. Наибольшее количество нерегенерируемых соединений характерно для первичных алканоламинов.

Меркаптаны, будучи кислотами, обратимо реагируют с алканоламинами с образованием водородрастворимых меркаптидов.

[Амин]+RSН <—> [Амин х Н]+х RS-

где R - углеводородный радикал.

Реакции предшествует растворение меркаптанов в абсорбенте и диссоциация на ионы

Н2O

РSН <—> RS- + Н+

Кислотность меркаптанов значительно ниже, чем Н2S и СO2, вследствие чего последние вытесняют меркаптаны из их соединения с аминами. Меркаптиды - нестойкие соединения, легко разрушающиеся при нагревании.

На растворимость меркаптанов в алканоламинах значительное влияние оказывает наличие СO2 в растворе. Равновесная растворимость С2Н5SН в аминах при наличии СO2 в растворе в количестве 2 г/л (глубокая регенерация) снижается в 2,5 - 4 раза. С увеличением содержания СO2 в растворе растворимость С2Н5SН приближается к растворимости его в воде. При этом характер изменения растворимости соответствует изменению рН раствора.