Смекни!
smekni.com

Выбор катализатора амидирования и изучение в его присутствии превращения м-толуиловой кислоты в N,N-диэтил-м-толуамид (стр. 3 из 9)

Для нивелирования направлений реакции, приводящих к образованию побочных продуктов, предлагают применять катализатор под общим названием "фосфат бора" [40] при температуре синтеза 280-290°С, времени контакта 0,5-1 мин (выход ДЭТА 83-84% при конверсии кислоты 80-82%). Способ предусматривает извлечение м-толуиловой кислоты из катализата и возврат ее в цикл.

Из нетрадиционных методов получения ДЭТА достойно упоминания электрохимическое окисление производных бензола общей формулы R1C6H4R2 [R1 и R2- Me или CH(OR)2] в присутствии спирта [43] и триалкиламина, а в качестве электролита применяют 1-70%-ные растворы исходного производного бензола в спирте. Выделенный ректификацией эфир электрохимически амидируют [44]. Особенностями таких процессов являются новейшее технологическое оформление химических процессов, повышенная чистота исходных продуктов, возможность создания непрерывного процесса по всей технологической нитке. Однако применение электрохимических методов требует больших энергозатрат и производственных площадей.

Методам аналитического контроля ДЭТА также посвящено несколько работ [45]; значительно больший акцент сделан на токсикологических испытаниях, из которых следует упомянуть исследования ориентированные на изучение его действия на организм человека [46].


2. Экспериментальная часть

Спектры ЯМР регистрировали на приборе марки BS 567 А. Рабочая частота для 1Н 100 МГц, 10%-ный раствор м-ДЭТА в CDCL3, внутренний стандарт ГМДС, δ: 1.13 (ушир. Сигнал. 6Н – 2CH3), 2.32 (о, ЗН-CH3-Ar), 3.23, 3.50 (у.с., 4Н – CH2N), 7.16 (м, 4Н - аром. Н). Рабочая частота для 13C 25.142 МГц, 50%-ный раствор м-ДЭТА в CD3CN, расчет относительно известных сигналов растворителя. Спектры снимали в условиях полного подавления спин-спинового взаимодействия [13С – 1Н] и в условиях "off-резонанса", δ: 13.6 (у.к. СН3-СН2), 20.8 (к. CH3-Ar), 40.0, 43.3 (т, CH2N), 123.4, 127.0, 128.5, 129.8 (д.аром. С-Н), 138.4, 139.0 (с, аром.третичн. С), 171.0 (с, С=С-N).

Продукты реакции анализировали методом ГЖХ на приборе ЛХМ-8МД-5 с пламенно-ионизационным детектором, колонка 3 м х 3 мм, заполнена 15% Апиозона L на хроматоне N-AW-DMCS. Температура хроматографирования от 80 до 240°С с программой 8 К/мин, скорость газа-носителя (азот) 20 см3/мин. Стандартная хроматограмма приведена на рис. 2.1. Воду, содержащуюся в катализате, анализировали на приборе ЛХМ-80 с катарометром, колонка 2 м х 3 мм, заполнена 20% ПЭГ 20М на хроматоне, импрегнированном 2,5% КОН. Температура хроматографирования 150°С, скорость газа-носителя (гелий) 40-45 см3/мин, внутренний стандарт – диметилацетамид. Реакцию амидирования изучали в лабораторном проточном интегральном реакторе стандартной конструкции. Раствор м-толуиловой кислоты в диэтиламине (мольное соотношение 1:1-1:7) насосом-дозатором подавали в верхнюю часть реактора, послойно заполненного кварцевой насадкой и катализатором. Обогрев осуществляли электропечью, контроль температуры проводили в трех точках по высоте слоя катализатора хромелъ-копелевыми термопарами. Охлажденные продукты реакции собирались в ловушке, откуда отбирались на анализ. При обработке оксида алюминия минеральными кислотами выявлено, что катализаторы должны эксплуатироваться сразу после стадии сушки. Предварительная прокалка приводит к потере активности либо до уровня немодифицированного Al2O3, либо снижается в еще более значительной степени. Эксплуатация выбранного гидроксилапатита кальция не требует после стадии приготовления дополнительных активационных обработок. Физико-химические характеристики КФ-70: насыпной вес 0,60 г/см3, прочность 1,0 кг/мм, удельная поверхность 80 м2/г, объем пор 0,65 см3/г, кислотность 5 мг-экв./г; структура - широкопористая (сдвиг кривой распределения пор по эквивалентным радиусам до 150 Å). Активность кальцийфосфатных катализаторов в реакциях кислотного катализа пропорциональна количеству групп HPO42-, содержание которых в исследованном нами образце контакта достигало 30%, что близко к теоретически возможному (33,3%). При необходимости проверки кислотности катализаторов на основе оксидов алюминия порошок контакта суспендировали в ацетонитриле и титровали н-бутиламином, за ходом процесса следили потенциометически. Применение Н0-индикаторов не дает лучших результатов.

Рис. 2.1. Хроматограмма основных продуктов катализата синтеза м-ДЭТА на катализаторе КФ-70.

1 – диэтиламин, 2,3,8,9,10 – неидентифицированные продукты, 4 – диэтилбензамид, 5- о-ДЭТА, 6 – м-ДЭТА, 11 – тетраэтилизофталамид.

Рис. 2.2. Хроматограмма водных погонов синтеза м-ДЭТА

1 – диэтиламин, 2 – вода, 3 – диэтилацетат (внутренний стандарт)

Рис. 2.3. Схема лабораторной установки амидирования в присутствии гетерогенных катализаторов. 1 – бюретка с насос-дозатором, 2 - реактор, 3 – электропечь, 4 - холодильник, 5 – приёмник.


3. Обсуждение результатов. Исследование гетерогенных катализаторов амидирования м-толуиловой кислоты

3.1 Термодинамика процесса

Поскольку реакция амидирования м-толуиловой кислоты (МТК) является обратимой, на первом этапе исследований были изучены термодинамические характеристики процесса. С целью определения состава равновесной смеси и условий, при которых могут быть сняты термодинамические ограничения, на первых порах был проведен расчет констант равновесия при различных температурах в диапазоне 260-320°С для реакции (табл. 3.1).

толуамид катализатор кислота токсикологический

Расчет констант равновесия проводился по экспериментальным данным после достижения в статических условиях устойчивых равновесных концентраций компонент [51]. В качестве катализатора реакции в данном случае использовали 0,5 мас.% хлорной кислоты. Достижение равновесия при любых температурах определялось только с одной стороны (опыты по гидролизу диэтилтолуамида не проводились).


где х - степень превращения МТК или ее мольная доля [52]; n и m - мольные доли исходных компонентов (для простоты принято, что n = m = 1).

Обработка полученных значений Кр по методу наименьших квадратов [53] позволила аппроксимировать их следующим эмпирическим уравнением:

Кр = exp(8,81 – 3019,25/Т),

которое, в частности, может быть использовано при синтезе химико-технологических систем на стадии проектирования.

Расчет термодинамически возможной степени превращения при различных температурах и мольных отношениях реагентов осуществлялся по формуле [51]

Таблица 3.1 Расчетные значения констант равновесия и термодинамически возможные степени превращения м-толуиловой кислоты при различных условиях синтеза м-ДЭТА

t, 0С К Соотношение МТК:диэтиламин Кр Степень превращения МТК (α)
260 533 1:11:5 21,49 0,5490,880
280 553 1:11:21:5 27,96 0,8400,9670,990
300 573 1:11:31:5 36,00 0,8570,9860,990
320 593 1:11:21:31:5 40,35 0,8600,9700,9880,990

Анализ данных, представленных в табл. 3.1, позволяет сделать вывод, что при соотношении МТК: диэтиламин 1:1 мольн. и при 2600С термодинамически возможная степень превращения составляет 0,55, а при 320 0С - 0,86. При температуре 280 0С и мольном соотношении реагентов 1:2 термодинамические ограничения практически снимаются.

Отметим, что небольшие значения констант равновесия свидетельствуют о том, что, несмотря на снятие термодинамических ограничений, реакция по-прежнему остается равновесной. Поэтому дальнейшее увеличение концентрации диэтиламина и повышение температуры максимально благоприятствуют процессу.

Следующей важной характеристикой процесса является тепловой эффект реакции, который из-за отсутствия в литературе термодинамических характеристик исходных и конечных компонент (кроме диэтиламина и воды) был оценен по теплотам сгорания органических соединений в газообразном состоянии, и его величина составила ΔНо298= -20±5 кДж/моль. В свою очередь теплоты сгорания веществ, принимающих участие в реакции, рассчитаны по формуле [54]:

ΔНсгор= - (204,2n + 44,4m + Σх),

где n - число атомов кислорода, необходимое для полного сгорания вещества; m - число молей образующейся воды; х - поправка (термическая характеристика), постоянная в пределах гомологического ряда.

Термическая характеристика (х) - это фактически инкремент численных значений группы атомов или типа связи. Так, например, для МТК х = 100,4 кДж/моль [54]. Таким образом, выполненный термодинамический расчет показал возможность количественного превращения м-толуиловой кислоты в м-ДЭТА и позволил определить область режимов проведения реакции, соответствующих достижению поставленной цели.


3.2 Испытание традиционных и модифицированных катализаторов амидирования алифатических кислот

Выявив термодинамически наиболее благоприятные условия проведениия исследуемой реакции, мы испытали некоторые традиционные (γ-Al2O3, SiO2) [55] и модифицированные (Zn/SiO2, Sn/SiO2 – силикагель типа МСК[56]) катализаторы амидирования, используемые в промышленных процессах получения алифатических амидов.