Знак минус свидетельствует о противоположной направленности векторов потока вещества и градиента концентрации. Градиент концентрации направлен в сторону максимального 'увеличения концентрации, а поток вещества - в сторону ее уменьшения, выравнивания неоднородности. Эйнштейном было показано, что коэффициенты пропорциональности в этом соотношении характеризуют средний квадрат смещения молекул за единицу времени вследствие хаотического теплового движения:
Эти величины называют эйнштейновскими коэффициентами диффузии. Они экспериментально определяются с помощью методов меченых атомов или ядерного магнитного резонанса, а также на основе численного эксперимента методом молекулярной динамики (моделирование движения совокупности частиц на компьютере). Diзависят от динамических характеристик молекул (масса, потенциал взаимодействия), а также от давления и температуры системы. Поскольку Diхарактеризуют подвижность молекул, они существенно зависят от фазового состояния системы.
В соответствии с подходом независимой диффузии предполагается, что в неравновесных условиях собственно диффузионные потоки можно описать эйнштейновскими коэффициентами. Тогда для изотермической системы в отсутствие турбулентности поток компонента i складывается из диффузионного и конвективного:
где n - число компонентов в системе. Следует иметь в виду, что в неравновесных условиях конвективная скорость может появляться и за счет самой диффузии. Например, рассмотрим аппарат, в одной части которого находится компонент 1, а в другой - компонент 2, отделенные друг от друга перегородкой. Давление и температура в обеих частях аппарата одинаковы. Если убрать перегородку, то за счет молекулярной диффузии возникнут противоположно направленные потоки компонентов. Однако величины потоков будут различны вследствие отличия динамических характеристик молекул компонентов и, следовательно, эйнштейновских коэффициентов диффузии Di. Допустим D1 > D2, тогда диффузионный поток первого компонента будет больше второго. Молекулярный механизм вызовет суммарный перенос вещества из первой чаоти аппарата во вторую, что приведет к возникновению в закрытом аппарате градиента плотности числа частиц и, соответственно, давления (р2 >р1). Это вызовет противоположно направленный конвективный поток, выравнивающий градиент давления
Таким образом, в неравновесных условиях наблюдать и изучать в чистом виде молекулярный перенос массы затруднительно, так как это требует искусственного поддержания' постоянства давления в системе. Сложность представляет экспериментальное определение величин Di, и конвективной скорости
. Даже измерив в лабораторной системе отсчета потоки всех компонентов , и поля концентраций сi, нельзя разрешить последнюю систему n уравнений, поскольку она содержит n+1 неизвестную величину (Di, ). Поэтому обычно диффузионные потоки определяют в системе отсчета, скорость движения которой относительно лабораторной устанавливается достаточно просто. Как правило, используют среднемассовую или среднеобъемную системы отсчета. Система отсчета задается условием равенства нулю суммарного потока соответствующего признака (обозначим его zi ) в данной системе отсчета:В среднемассовой системе отсчета zi=mi (мольная масса компонента), а в среднеобъемной zi=Vi (парциальный мольный объем компонента Vi м3/кмоль).
Используя последнее уравнение, можно выразить
через Di, μi, cii=1,n и представить потоки в видеНа практике удобнее использовать коэффициенты диффузии, связывающие потоки не с градиентами химических потенциалов, а с градиентами концентрации. Выражая химические потенциалы через мольные концентрации и используя соотношение
позволяющее сократить на единицу число независимых переменных, можно записать
Таким образом, макроскопический поток каждого компонента в системе отсчета z зависит от градиентов концентраций всех компонентов, а коэффициенты пропорциональности носят название матрицы коэффициентов многокомпонентной диффузии и определяются как свойствами компонентов среды, так и выбором системы отсчета. Экспериментальное нахождение коэффициентов диффузии осуществляется, как правило, в замкнутом приборе. В этих условиях суммарный поток объема равен нулю, т.е. лабораторная система отсчета совпадает со среднеобъемной. Поэтому экспериментальные данные по коэффициентам диффузии обычно приводятся для среднеобъемной системы отсчета. В частном случае двухкомпонентной системы матрица
вырождается в единственный коэффициент бинарной (взаимной)диффузииЭто соотношение называется первым законом Фика.
2.1.3 Турбулентный механизм
Турбулентный перенос массы можно рассматривать по аналогии с молекулярным как следствие хаотического перемещениявихрей. Вводится коэффициент турбулентной диффузии DT, зависящий как от свойств среды, так и от неоднородности скорости и удаленности от межфазной поверхности. При турбулентном движении, суммарный поток вещества относительно лабораторной системы, отсчета может быть записан
Поскольку объемы среды, участвующие в турбулентных пульсациях, значительно превышают молекулярные размеры, интенсивность турбулентного переноса массы может быть существенно выше молекулярного. Отношение коэффициентов турбулентной и молекулярной диффузии в пристенной области достигает DT/Di ~ 102 - 105.
2.2 Перенос энергии
Энергию системы можно подразделить на микроскопическую и макроскопическую. Микроскопическая, являющаяся мерой внутренней энергии самих молекул, их теплового движения и взаимодействия, называется внутренней энергией системы (U). Макроскопическая складывается из кинетической энергии (Ек), обусловленной конвективным движением среды, и потенциальной энергии системы в поле внешних сил (Еп). Таким образом, полную энергию системы, приходящуюся на единицу массы, можно представить как
Е' = U' + Е'п + Е'к , Дж/кг
Штрихами отмечены величины, отнесенные к единице массы.
Энергия может передаваться в форме теплоты или работы. Теплота - форма передачи энергии на микроскопическом уровне, работа - форма передачи энергии на макроскопическом уровне. Рассмотрим выражения для потока энергии за счет различных механизмов переноса.
2.2.1 Конвективный механизм
Поток энергии, переносимый конвективным механизмом в лабораторной системе отсчета, имеет вид
Это количество энергии, переносимое движущимся макроскопическим "объемом за единицу времени через единицу поверхности.
2.2.2 Молекулярный механизм
Молекулярным механизмом осуществляется перенос энергии на микроскопическом уровне, т.е. в форме тепла. Поток тепла за счет молекулярного механизма в условиях механического и концентрационного равновесия может быть представлен в виде
где λ - коэффициент молекулярной теплопроводности, Вт/м К. Это уравнение носит название закона Фурье.
В разреженных одноатомных газах допустимо пренебречь потенциальной энергией взаимодействия молекул и считать внутреннюю энергию равной средней кинетической энергии поступательного движения молекул pU'=3NkT/2V. В этом случае поток тепла будет определяться потоком кинетической энергии молекул:
В плотных газах и конденсированных средах при определении внутренней энергии необходимо учесть энергию потенциального взаимодействия. В этомслучае поток тепла будет определяться поступательным переносом кинетической и потенциальной энергии молекул, а также и столкновительным переносом. Таким образом, коэффициент молекулярной теплопроводности складывается из трех составляющих:
Этим объясняется тот факт, что в отличие от коэффициента молекулярной диффузии, уменьшающегося с увеличением плотности системы, коэффициент молекулярной теплопроводности возрастает с увеличением плотности, несмотря на затруднения в подвижности молекул. Величина коэффициента молекулярной теплопроводности составляет для газов λ ~ 10-2 Вт/(м К), для жидкостей λ ~ 10-1 Вт/(м К), для металлов λ~ 102 Вт/(м К).
2.2.3 Турбулентный механизм
Турбулентный перенос энергии можно рассмотреть по аналогии с молекулярным, вводя коэффициент турбулентной теплопроводности λТ:
Как и коэффициент турбулентной диффузии, λТбудет определяться свойствами системы и режимом движения. Суммарный поток энергии в лабораторной системе отсчета может быть записан как