Металлические свойства у него выражены посильней, но к этому его просто обязывает положение в таблице элементов: он ближе к "полюсу металличности" (левый нижний угол таблицы), чем другие элементы его подгруппы. В сухом воздухе висмут устойчив, но во влажном он облачается в тончайшее покрывало оксида. Если же металл нагреть выше 1000 °С, он сгорает красивым голубоватым пламенем.
Как известно, при электролизе ионы металла переносятся с анода на катод. Так считали почти полтора столетия - с тех пор как английский ученый Майкл Фарадей установил важнейшие законы электролиза. Но вот в 1975 году сотрудники Института общей и неорганической химии Академии наук УССР обнаружили, что некоторые металлы при электролитических процессах устремляются к аноду. В опытах украинских ученых катод был изготовлен из висмута, анод - из никеля, а роль электролита выполнял расплавленный едкий натр. Когда был включен ток, висмутовый катод начал таять на глазах, и уже вскоре на поверхности анода появились блестящие шарики из чистого висмута.
Это открытие не опровергает, а лишь уточняет закон Фарадея. Большинство металлов действительно выделяется на катоде, и лишь некоторые - висмут, свинец, олово, сурьма - "предпочитают" анод, правда, при условии, что электролитом служит расплав солей щелочных и щелочноземельных металлов.
"Поправка к закону" может быть использована для очистки многих металлов и сплавов от примесей висмута, свинца и других "нарушителей порядка". Для этого металлическую заготовку, которую нужно подвергнуть рафинированию, вводят в электролит в качестве катода. Начинается электролиз, и ненужные примеси, расставшись с основной массой металла, перебазируются на анод. Этот экономичный способ назван катодной очисткой.
Как известно, все металлы, да и вообще большинство твердых тел, имеют кристаллическую структуру, при которой их атомы (ионы, молекулы) располагаются в пространстве в строго определенном порядке.
В ходе многочисленных опытов удалось установить, что если на переохлажденную металлическую пластинку, находящуюся в камере, где обеспечены указанные условия, нанести пары какого-либо металла, то на пластинке тут же образуется "стеклянная" пленка. Подобный эксперимент, в частности, был проделан с висмутом. Оказалось, что пленка из висмутового "стекла" толщиной всего в несколько микрон обладает буквально сказочными магнитными и сверхпроводящими свойствами. Даже при обычной температуре ее сопротивление электрическому току во много раз ниже, чем у того же висмута в кристаллическом состоянии.
Висмут помог советским физикам синтезировать ядра 107-го элемента периодической системы. Помещенная в ускоритель висмутовая мишень подверглась ожесточенной бомбардировке ионами хрома. Более двух месяцев непрерывно работал ускоритель, сопоставлялись и анализировались результаты десятков тончайших экспериментов, и вот, наконец, можно было с уверенностью заявить, что при слиянии иона хрома с ядром висмута образуются ядра 107-го элемента, период полураспада которых всего около двухтысячных долей секунды.
Основное количество Висмута добывается попутно при огневом рафинировании чернового свинца (веркблея). Пирометаллургический способ основан на способности Висмута образовывать тугоплавкие интерметаллические соединения с К, Na, Mg и Са. В расплавленный свинец добавляют указанные металлы и образовавшиеся твердые соединения их с Висмутом (дроссы) отделяют от расплава. Значительное количество Висмута извлекают из шламов электролитического рафинирования свинца в кремнефтористоводородном растворе, а также из пылей и шламов медного производства. Содержащие Висмут дроссы и шламы сплавляют под щелочными шлаками. Полученный черновой металл содержит примеси As, Sb, Cu, Pb, Zn, Se, Те, Ag и некоторых других элементов. Выплавка Висмута из собственных руд производится в небольшом масштабе. Сульфидные руды перерабатывают осадительной плавкой с железным скрапом. Из окисленных руд Висмут восстанавливают углем под слоем легкоплавкого флюса.
Для грубой очистки чернового Висмут применяются в зависимости от состава примесей различные методы: зейгерование, окислительное рафинирование под щелочными флюсами, сплавление с серой и другими. Наиболее трудноотделяемая примесь свинца удаляется (до 0,01%) продуванием через расплавленный металл хлора. Товарный Висмут содержит 99,9-99,98% основного металла. Висмут высокой чистоты получают зонной перекристаллизацией в кварцевых лодочках в атмосфере инертного газа.
Висмут получают сплавлением сульфида с железом:
Bi2S3 + 3Fe = 2Bi + 3FeS,
или последовательным проведением процессов:
2Bi2S3 + 9O2 = 2Bi2O3 + 6SO2↑;
Bi2O3 + 3C = 2Bi + 3CO↑.
Висмутовые руды — природные минеральные образования, содержащие Висмут в количествах, при которых экономически целесообразно его извлечение современными методами производства.
Висмут – малораспространенный элемент. Его кларк (содержание в земной коре по массе) составляет 2х10-5% и по этому показателю он близок к серебру. Обратите внимание на двойственность поведения висмута в природе. С одной стороны, он может концентрироваться в минералах, а с другой – рассеиваться в рудах (особенно сульфидных) так, что содержание его в них можно определить лишь одним словом – «следы». Ярко выраженная способность висмута к образованию собственных минералов не позволяет отнести его к рассеянным элементам в общепринятом значении этого слова. В «чужие» кристаллические решетки он, как правило, не входит. Исключение – свинцовый минерал галенит PbS, в решетке которого при определенных условиях висмут может удерживаться без образования собственных минералов.
Тем не менее, скопления богатых висмутовых руд встречаются очень редко. Они крайне ограниченны в пространстве и отличаются неравномерностью распределения, что, конечно, доставляет огорчения геологам и горнякам, занимающимся разведкой и эксплуатацией висмутовых месторождений.
Минералы висмута как бы прячутся в рудах других элементов: вольфрама, олова, меди, никеля, молибдена, урана, кобальта, мышьяка, золота и других элементов – разных и непохожих.
Висмут встречается в природе в виде многочисленных минералов в основном гидротермального происхождения, главные из которых: висмутин или висмутовый блеск (Bi2S3), висмут самородный (Bi), бисмит или висмутовая охра (Bi2O3), тетрадимит (Bi2Te3) и пр. Эти минералы рассеяны и встречаются как примеси в свинцово-цинковых, медных, молибденово-кобальтовых и олово-вольфрамовых рудах (поэтому и добывается висмут как побочный продукт переработки полиметаллических руд). Естественными источниками поступления висмута в природные воды являются процессы выщелачивания висмутсодержащих минералов. Источником поступления в природные воды могут быть также сточные воды фармацевтических и парфюмерных производств, некоторых предприятий стекольной промышленности.
Висмут в том или ином количестве в виде изоморфной примеси входит в состав некоторых сульфидов, а также образует самостоятельные минералы. Известно около 90 минералов висмута, но промышленное значение имеют немногие из них: самородный висмут, висмутин, виттихенит, тетрадимит, галеновисмутит, козалйт, айкинит, бисмит, бисмутит.
Самородный висмут (содержание Bi 99,9 %) кристаллизуется в тригональной сингонии, кристаллы ромбоэдрические, псевдокубические, агрегаты зернистые, листоватые, перистые, дендриты. Цвет желтовато-белый, блеск металлический, твердость 2—2,5, плотость 9,8 г/см3.
Обнаруживает совершенную спайность. В свежем изломе серебристо-белый с желтоватым оттенком, обычно с красноватой побежалостью. Твёрдость по минералогической шкале 2,5, плотность 9780—9830 кг/м3. В. с. образуется в месторождениях скарнового типа и в гидротермальных месторождениях, в ассоциации с касситеритом, вольфрамитом, молибденитом, шеелитом и сульфидами Pb, Zn, Cu, Fe, а также в рудах, содержащих сульфиды и арсениды Со и Ni, урановую смолку, самородное серебро и др.
Природный висмут состоит из одного изотопа 209Bi, который считался самым тяжёлым из существующих в природе стабильных изотопов. Однако в 2003 было экспериментально доказано, что он является альфа-радиоактивным с периодом полураспада 1,9±0,2×1019 лет.
Кроме 209Bi, известны ещё более трех десятков (пока 34) изотопов и ещё больше изомеров. Среди них есть три долгоживущих:
207Bi 31,55 год
208Bi 0,368×106 лет
210mBi 3,04×106 лет
Все остальные радиоактивны и короткоживущи: периоды их полураспада не превышают нескольких суток.
Тринадцать изотопов висмута с массовыми числами от 197 до 208 и самый тяжелый 215Bi получены искусственным путём, остальные — 210Bi, 211Bi, 212Bi, 213Bi и 214Bi — образуются в природе в результате радиоактивного распада ядер урана, тория, актиния и нептуния.
Висмутин (англ. Bismuthinite) Bi2S3 (Bi 81,3 %) – минерал, сульфид висмута подкласса простых сульфидов кристаллизуется в ромбической сингонии, кристаллы призматические и игольчатые, цвет свинцово-серый, белый с желтоватой и синей побежалостью, блеск металлический, твердость 2—2,5, плотность 6,8 г/см3. Встречается в гидротермальных месторождениях жильного типа в ассоциации с топазом, бериллом, в золото-кварцевых жилах и медно-висмутовых месторождениях. Впервые обнаружен в 1832 г. в Боливии. Син.: бисмутин, висмутинит, висмутовый блеск.
Вi - 81,3 %, S - 18,7 %. Нередки примеси в небольших количествах РЬ, Сu, Fе, Аs, SЬ, Те и др. Из них РЬ, Sb и Те могут изоморфно замещать висмут.