К недостаткам проточно-циркуляционного метода можно отнести: 1) сложность аппаратурного оформления; 2) необходимость достаточных количеств исходных веществ и времени для достижения стационарного состояния, в некоторых случаях— возможное усиление побочных процессов [1].
Существенные преимущества проточно-циркуляционного метода подтверждают целесообразность его применения при изучении кинетики реакций. Схема проточно-циркуляционной установки для окисления сернистого ангидрида приведена на рис. 4. Сернистый ангидрид, азот и кислород из баллона дозируют клапаном тонкой регулировки в осушительную систему. Точный расход газов регулируют моностатом и замеряют реометром. Затем смесь газов поступает в циркуляционный контур; анализ газовой смеси на входе и выходе из цикла производят по методу Рейха. Для предотвращения «залипания» клапанов вследствие конденсации SОз производят постоянный электрообогрев клапанной коробки 10. Реактор 12 представляет, собой трубу с сеткой и впаянным карманом для термопары. Во время эксперимента реактор помещают в цилиндрическую печь с автоматической регулировкой температуры. Установка позволяет работать при температурах от 0 до 620 °С. Степень превращения х рассчитывают по формуле
где Сн, Ск —начальная и конечная концентрации SO2, соответственно, объемн.%.
Рис. 4. Проточно-циркуляционная установка для окисления S02: 1—редуктор; 2—вентиль тонкой регулировки; 3 — барботер с H2SO4; 4—колонка с CuO; 5—колонка с ангидроном; 6—моностат с дибутил-фталатом; 7—реометр; 8—колонка с P2O5; 9—ловушка; 10 —клапанная коробка; 11 — циркуляционный насос; 12—реактор.
Активность катализатора характеризуется константой скорости, рассчитанной по уравнению Борескова [1].
Существует «дифференциальный» способ исследования каталитической активности, представляющий собой обычный проточный метод при малом количестве катализатора и больших объемах протекающей реакционной смеси, т. е. при больших объемных скоростях. Благодаря этому, изменение степени превращения в слое катализатора невелико, и количество превращенного вещества может служить мерой скорости реакции. Однако, этот метод не обеспечивает достаточную точность измерения скорости реакции.
В проточно-циркуляционных методах для расчета скорости реакции используют не малую разность концентрационной смеси на входе и выходе из слоя катализатора, а значительную разность концентраций смеси, поступающей в циркуляционный контур и выходящей из него. Благодаря этому каталитическая активность проточно-циркуляционным методом может быть измерена с гораздо большей точностью [1].
Помимо перечисленных наиболее распространенных методов существует и ряд других, позволяющих оценить активность контактных масс.
Метод изучения кинетики реакций во взвешенном слое катализатора приобретает большое значение, в частности, при моделировании производственных условий некоторых процессов. Ведение реакций во взвешенном слое требует тщательного выбора гидродинамических условий, приближающихся к моделируемому процессу. Прежде всего важно, аналогичное моделируемому процессу, отношение действительной скорости wк скорости начала взвешивания wBкатализатора.[1]
Скорость начала взвешивания можно определить по формуле
где Reв = щвd3 / н – критерий Рейнольдса; Ar = gd33 / н2 * ств – сг / сг - критерий Архимеда; d3— средний размер зерен; рг, ртв — плотности газа и твердых частиц, соответственно; v — кинематический коэффициент вязкости газа.
Уравнение (8) применимо для моно- и полидисперсных слоев с частицами сферической и неправильной формы в широком диапазоне чисел Re и позволяет определять wr с точностью до ±30%.
Общей формулой для расчета широкого диапазона скоростей (в м/с) является та, в которой истинная скорость в начале взвешивания wB.B= wB/e0(e0 —порозность слоя) составляет:
Средний размер частиц может быть определен различными способами. При достаточно узком гранулометрическом составе частиц, по форме близкой к сферической, если их размер меняется от d31до d32:
При широком гранулометрическом составе путем рассева выделяют узкие фракции и рассчитывают их средний диаметр d3по формуле (10) и долю частиц At с этим размером. Средний диаметр частиц всех фракций катализатора может быть рассчитан по формуле:
Рис. 5. Установка для окисления S02 во взвешенном слое катализатора: 1—прибор Рейха; 2—реостат; 3—пирометр; 4—контактный аппарат; 5—кран для отбора проб газа; 6—смеситель; 7—реометр; 8—склянка с H2SO4
Для частиц, форма которых существенно отличается от сферической, d3iопределяют по формуле
Установка для окисления сернистого ангидрида во взвешенном слое катализатора (рис. 5) аналогична установке, изображеннойна рис. 119, но здесь газовую смесь заданного состава подают в контактный аппарат снизу вверх со скоростью, необходимой для приведения слоя катализатора во взвешенное состояние.
Импульсные методы исследования активности катализаторов находят в последнее время широкое применение. Они предусматривают использование хроматографического адсорбента в качестве катализатора с периодической подачей на него реагирующих веществ. В хроматографической колонке происходит разделение продуктов и непрореагировавших компонентов реакционной смеси.[1]
В импульсном каталитическом микрореакторе (рис. 6) через систему пропускают с постоянной скоростью газ-носитель (инертный газ или один из реагентов). В газ-носитель до реактора вводят реагент. Из реактора газ-носитель поступает в термостатированную колонку газового хроматографа и затем в детектор.