Смекни!
smekni.com

Получение алкилсиланов взаимодействием металлоорганических соединений с алкилхлорсиланами (стр. 4 из 5)

Силиконовые каучуки (состоят из полимера, наполнителя и вулканизатора) представляют собой обычные линейные полидиметилсилоксаны с относительной молекулярной массой 250000-450000. Нагревание приводит к сшивке линейных полимеров поперечными связками.

Наполнители, например, различные типы аэрогелей оксида кремния (IV), улучшают механические свойства полимеров, повышают их прочность при растяжении и придают способность к удлинению до 60%. Вулканизацию проводят в присутствии перекисей. Силиконовые каучуки применяют в качестве электроизоляционного материала, прокладок различной аппаратуры и электродвигателей.

Кремнийорганические соединения получают из алкилхлорсиланов или аркилхлорсиланов. Это SiCl2(СН2)2, Si(С2Н5)2Cl2, С6Н5SiCl3. Схема последовательного гидролиза и поликонденсации при получении кремнийорганических полимеров следующая:

СН3 СН3

| |

Cl-Si-C + 2Н2О → НО-Si-ОН + 2НCl ;

| |

СН3 СН3

СН3 СН3 СН3 СН3

| | | |

НО-Si-ОН + НО-Si-ОН → НО-Si-О-Si-ОН + Н2О

| | | |

СН3 СН3 СН3 СН3

И так дальше до образования полимера, имеющего формулу

Стеклопласты

Стеклопласты – пластические массы, у которых связующим веществом служат синтетические полимеры, а наполнителем или армирующим материалом – стеклянное волокно или стеклянная ткань, придающие стеклопластикам особую прочность.

Большинство изделий из стеклопластиков изготавливают с применением в качестве связующих ненасыщенных полиэфиров – полиэфирмалоинатов или полиэфиракрилатов, а также эпоксидных и кремнийорганических полимеров.

В зависимости от взятого связующего стеклопластики могут перерабатываться в изделия при обычной температуре без давления или при небольшом давлении. Наибольшее значение приобретают стеклопластики, которые могут перерабатываться в изделия методом так называемого «контактного» формования с постепенным нанесением слоев связующего на каркас из армирующего материала.

Стеклопластики могут применяться для изготовления таких крупногабаритных изделий, как корпуса мелких судов, шлюпки, кузова автомобилей, крыши железнодорожных вагонов и т.п. Пока изделия можно изготавливать только с помощью «контактного» метода формования, т.е. по существу вручную, но нет сомнения, что в ближайшем будущем производство таких изделий будет механизировано и стеклопластики благодаря своей исключительной прочности и дешевизне найдут самое широкое применение во многих отраслях народного хозяйства. В зависимости от вида армирующего материала стеклопластики делятся на следующие группы:

А) Стеклотекстолиты – пластики, армированные стеклянными тканями. Изделия получаются обычно методом «контактного» формования.

Б) Стекловолокниты – пластики, в которых армирующим наполнителем служит войлок из стеклянного волокна. Перерабатываются методом литья или прессования.

В) Анизотропные стеклопластики – пластики с армирующим материалом в виде однонаправленной стеклянной нити. Изделия получают методом намотки стеклянного волокна, предварительно обработанного синтетическим полимером.

Г) Изотропные стеклопластики – пластики, армированные стекломатами (рубленое стеклянное волокно). Перерабатываются методом контактного формования.

Химические соединения, вырабатываемые промышленностью основного органического синтеза служат полупродуктами для производства пластических масс, синтетических волокон, синтетических каучуков, синтетических моющих средств и многого другого.

Состав люминесцирующего жидкостного фильтра

Предложен состав люминесцирующего жидкостного фильтра для неодимомых лазеров, содержащий в качестве растворителя - алкилсиланы формулы R2Si(OR')2, где: R, R' - алкильные радикалы с числом углеродных атомов от 1 до 6, а в качестве люминесцирующей добавки - 1,8-нафтоилен[1',2']бензимидазола в концентрации 10-4-10-3 моль/л, позволяющий снизить токсичность и коррозионную активность, при сохранении фотостабильности и эффективности преобразования излучения накачки.

Жидкостные теплоносители для лазеров (В. М. Подгаецкий, В. М. Волынкин И. В. Комлев, А. В. Резниченко)

В данной статье даются представление о составе и свойствах жидкостных теплоносителей для лазерной, световой и телевизионной техники. Приведятся результаты исследований оптотермодинамических и физико-химических процессов в жидкостях, находящихся под действием мощного широкополосного излучения, которые позволили предложить новый метод диагностики критического состояния жидкостей и растворов. Исследования спектрально-люминесцентных явлений в жидкостях, работающих в лазерных системах, позволили значительно увеличить КПД и ресурс неодимовых лазеров.

Одним из рассматриваемых теплоносителей являются кремнийорганические соединения.

«На следующем этапе поиска органических растворителей для лазерных ЖТ мы обратились к изучению обширного класса кремнийорганических соединений, включающего органосиланы R4nSi(OR)n общей структурной формулы

где: R, R1 — алкилы и алкилены линейной и разветвленной структур и циклические производные.

Такие бесцветные жидкости характеризуются гидрофобностью, низкой температурой застывания, высокой сжимаемостью, химической инертностью, малым изменением вязкости с температурой, высокой термической, термоокислительной и фотостабильностью. Эти соединения являются хорошими диэлектриками. По этим причинам кремнийорганические соединения находят широкое применение в промышленности в качестве гидравлических — жидкостей и теплоносителей, пеногасителей, гидрофобизаторов, смазочных масел и консистентных смазок, способных длительно работать в интервале температур (-100;250)°С.

Отбор соединений, проведенный по комплексу параметров (спектральные и вязкостно-температурные характеристики, фото- и термостойкость, токсичность, сырьевая база и др.) на основании данных научно-технической литературы и собственных экспериментов, позволил остановиться на диметилдиалкилоксисилане (ДМДАОС).

Высокая химическая прочность связей Si-CH3 (314 кДж/моль) этого соединения обусловливает стойкость ЖТ, созданных на его основе, к действию длительного нагрева и мощного облучения. ДМДАОС малотоксичен: ЛД50 > 10 г/кг, ПДК в воздухе рабочей зоны 10 мг/м3, что обусловливает его отнесение к четвертому классу опасности.

Нами разработана технология синтеза особо качественного ДМДАОС с высоким выходом продукта (> 90 %), освоено его производство. На его основе были созданы ЖТ (в том числе фильтрующие и люминесцирующие) типа РМ.»

алкилсилан гидрирование соединение металлоорганический


Вывод

В работе были рассмотрены важнейшие способы получения алкилсиланов:

· взаимодействие металлоорганических соединений с алкилхлорсиланами;

· взаимодействие гидридов металлов с алкилхлорсиланами;

· каталитическое диспропорционирование соединений, содержащих алкилгидридсилановый фрагмент;

· гидрирование алкилхлорсиланов и тетраалкилсиланов.

У каждого из них есть свои недостатки.

1. Синтез через металлоорганические соединения

Использование металлоорганических соединений вызывает необходимость их получения непосредственно перед синтезом магнийорганические и цинкорганические реагенты). Кроме того, растворы алюминийорганических веществ в нефрасе содержат целую гамму различных углеводородных примесей, которые переходят в целевой продукт и затем требуют тщательного отделения.

Как правило, использование элементоорганических соединений часто приводит к получению значительных количеств побочных продуктов. Так, например, при взаимодействии растворенных диэтилалюминийгидрида и тетрахлорида кремния в углеводородном растворителе в автоклаве при 50ºС наряду с моносиланом образуются примеси этана и монохлорсилана.

2. Каталитическое диспропорционирование:

Недостатками такого метода являются получение не индивидуального, а ряда соединений, что неизбежно приводит к появлению дополнительных стадий очистки, а также необходимость применения катализатора, и ограниченное по времени воздействие катализатора на реагент.

Следует отметить, что выход целевого продукта из кремнийорганических эфиров составляет менее 10% от количества исходного реагента, а на 1 кг продукта образуется 8-10 кг побочных кремнийсодержащих соединений, требующих утилизации. Кроме того, из-за нестабильности реагента существует проблема получения этого исходного в чистом виде в достаточном количестве.

3. Гидрирование:

Такой способ характеризуется низким выходом. Применение водорода, высоких температур (выше 400ºС) и катализатора также следует отнести к недостаткам.

4. Восстановление хлор- или алкоксисиланов гидридами металлов

Недостатками такого способа являются использование растворителя, необходимость его регенерации.

Кроме того, в случае использования акил(алкокси)силанов возникает необходимость их получения непосредственно перед синтезом.

Поскольку для получения карбидокремниевых материалов и композитов в основном используются гидридсодержащие алкилсиланы, то наибольшее практическое значение для получения алкилсиланов имеет метод с использованием гидридов металлов по следующим причинам:

· Взаимодействие между реагентами проходит с высокой скоростью и высоким выходом, вплоть до количественного.

· При взаимодействии алкилхлорсиланов с гидридами металлов выделяется только целевой продукт с незначительным содержанием посторонних примесей, что существенно при дальнейшем способе очистки для достижения высокой чистоты алкилсилана.