Этой проблеме посвящены проекты, выполненные под руководством А.Р. Хохлова (Физический факультет МГУ) и П.Г. Халатура (Тверской государственный университет). Проекты удачно дополняют друг друга, что отражает продуктивное сотрудничество двух университетов. Это обстоятельство специально подчеркнуто, поскольку в настоящее время разумная научная кооперация может оказаться одним из наиболее действенных способов преодоления существующих трудностей. В проектах теоретически и методами компьютерного моделирования проанализированы процессы формирования структурных неоднородностей нанометрового масштаба в полимерных расплавах, растворах, смесях, сетках. Определены условия возникновения в расплавах и растворах иономеров мультиплетных структур (агрегатов макромолекул) различного типа - сфер, дисков, ламелярных слоев. Построены фазовые диаграммы, содержащие области упорядоченных структур и двухфазные области. Исследовано образование периодических наноструктур в статистических сополимерах и показано, что при наличии флуктуационных эффектов должны происходить разрушение регулярных структур, характеризующихся дальним порядком, и образование замороженной спинодальной структуры. Проанализированы возможная структура сферических мицелл из диблоксополимеров с одним нейтральным и другим полиэлектролитным блоками и процесс их образования в водном растворе. Определены также условия, при которых в полимерах со специфическим взаимодействием образуются мицеллы несферической формы. Показано, что при микрофазном разделении в полимерных смесях и растворах со стеклованием одного из компонентов и /или в случае нелокальной энтропии смешения возможно возникновение микродоменной структуры нанометрового масштаба, стабильность которой определяется кинетическими и термодинамическими факторами. Изучен процесс необратимой агрегации макромолекул с различным числом и распределением по цепи ассоциирующих групп, и выполнен фрактальный анализ полимерных агрегатов. Предложен новый подход к теоретическому описанию спинодального распада, который основан на новом уравнении типа уравнения Ланжевена, позволяющем непосредственное рассмотрение релаксации в пространстве корреляционных функций.
Решению вопросов частичного упорядочения в различных полимерных системах при помощи компьютерного моделирования посвящены также проекты В.А. Иванова (Физический факультет МГУ) и А.Л. Рабиновича (Институт биологии Карельского научного центра РАН). В первом при моделировании перехода клубок-глобула для жесткоцепных макромолекул впервые проведен последовательный анализ формы получающейся глобулы и обнаружен режим существования устойчивой тороидальной структуры, а также впервые проведен теоретический анализ фазовой диаграммы жесткоцепной макромолекулы с персистентным механизмом гибкости и найдена область существования устойчивой тороидальной структуры молекулы ДНК Во втором изучены конформационные свойства ненасыщенных липидов и создано специальное программное обеспечение, позволяющее эффективно проводить вычислительные эксперименты методами Монте-Карло и молекулярной динамики с монослоями, бислоями и отдельными липидными молекулами, содержащими ненасыщенные углеводородные фрагменты. Связь возникающей структурной микрогетерогенности с макроскопическими свойствами полимерных систем рассмотрена в проекте С.А. Патлажана (Институт химической физики в Черноголовке РАН). Предметом теоретического исследования были вязкоупругие свойства жидких и сетчатых микрогетерогенных полимеров [смеси мономеров и растворы линейных макромолекул, образующих термообратимые гели за счет физических (водородных) связей между одноименными и разноименными мономерными единицами]. Определены физические условия существования фазовых диаграмм разного типа, которые характеризуются наличием одной, двух и трех критических точек фазового расслоения. На основе метода широкоуглового рассеяния света разработана методика измерения фрактальных размерностей агрегатов частиц, диспергированных в полимерной матрице. Применительно к сетчатым гетерогенным системам развиты аналитические и численные методы расчета эффективных модулей упругости фрактальных структур. Проблемы колебательной динамики кристаллической решетки полимеров продолжают успешно решаться теоретической группой ИХФ РАН под руководством Л.И. Маневича. Этой группой предложены солитонные механизмы распространения фронта топохимических реакций и структурных переходов в кристаллических полимерных системах. В частности, показано, что в зависимости от характера дальнодействующих сил существуют два типа бистабильных квазиодномерных молекулярных систем, для первого из которых (со слабым дальнодействием) характерна конкуренция между локально-флуктуационным и солитонным механизмами химических реакций и структурных переходов, а для второго (с достаточно интенсивным дальнодействием) возможен только солитонный механизм. Изучен новый тип стационарных локализованных решений, представляющих собой узкий реакционный фронт, распространение которого сопровождается квазимонохроматическим излучением. Методом молекулярной динамики показано, что тепловые колебания полиэтиленовой цепи в кристалле приводят к образованию пар топологических солитонов кручения (с растяжением или сжатием), и что рост концентрации таких солитонов вблизи экспериментально наблюдаемой температуры плавления, отражающийся в росте теплоемкости цепи, можно отождествить с начальной стадией фазового перехода.
3. СТРУКТУРА И СВОЙСТВА ПОЛИМЕРОВ
Обзор результатов экспериментальных исследований также начнем с тех, которые относятся к проблеме самоупорядочения макромолекул. Это прежде всего проекты, относящиеся к изучению жидкокристаллического (ЖК) состояния в полимерах. ЖК полимерные системы, привлекшие внимание большого числа ученых в 70-80-ые годы, по-прежнему остаются актуальной темой исследований. Проблемы, решаемые в рамках рассматриваемых проектов, касаются изучения конформационных переходов в макромолекулах сложного химического строения, в частности содержащих мета-замещенные фрагменты азобензола в центре мезогенного фрагмента и способные к транс-цис изомеризации под действием УФ облучения, в процессе их самоупорядочения в расплавах (Б.З. Волчек, ИВС РАН) и исследования анизотропии вязкоупругости ЖК нематических полиэфиров и полиамидоэфиров (В.Е. Древаль, ИНХС РАН).
Однако большая часть проектов физического и физико-химического плана, как уже отмечалось выше, посвящена многокомпонентным полимерным системам. К ним можно отнести такие традиционные двухкомпонентные системы, как растворы и гели полимеров. Основная современная тенденция в этой области физической химии полимеров - акцент на природные полимеры и макромолекулы, способные моделировать определенные типы поведения природных макромолекул (полиэлектролиты и макромолекулы, проявляющие дифильный характер взаимодействия).
Так, в проекте Ю.В. Бресткина (ИВС РАН) сопоставлена крупномасштабная динамика полимерных цепей полуразбавленных растворов полимеров, проявляющих свойства полиэлектролитов: изо- и атактического поли-2-винилпиридина и хитозана. Определены критические условия перехода макромолекул в практически полностью вытянутое состояние в интенсивном продольном потоке в зависимости от концентрации полимера и ионной силы раствора. Показано, что переход клубок - развернутая цепь для частично протекаемых макромолекул хитозана является неравновесным (динамическим) фазовым переходом первого рода, а для непротекаемых макромолекулярных клубков поли-2-винилпиридина - неравновесным фазовым переходом второго рода (непрерывным).
В.Я. Гринбергу (Институт биохимической физики РАН) удалось впервые определить термодинамические параметры термотропного коллапса разбавленных гелей ряда слабосшитых дифильных полимеров: слабо ионизированных сополимеров винилкапролактама с метакрилатом натрия, N-изопропилакриламида с акрилатом натрия, гомополимера N-изопропилакриламида и стехиометрических комплексов гомополимера диаллилметиламмонийхлорида с додецилсульфатом натрия. Для этой цели был удачно использован отечественный метод высокочувствительной дифференциальной калориметрии, разработанный в свое время СКБ биологического приборостроения РАН. Показано, что движущей силой коллапса является гидрофобное взаимодействие и что этот переход в большинстве случаев носит диффузный, непрерывный характер.
Ключевой вопрос в понимании процесса формирования высокодисперсных многокомпонентных полимерных систем, их морфологии и свойств - межфазное взаимодействие. Этой проблеме посвящено несколько проектов. Изучение межфазных слоев высокомолекулярных соединений в равновесии с двумя несмешивающимися фазами (В.Н. Измайлова, Химический факультет МГУ) привело к развитию представлений о межфазных слоях как особой пограничной зоне. Выяснена роль фазовых превращений при образовании межфазных слоев, а также зависимость свойств межфазных слоев от конформационного состояния высокомолекулярного стабилизатора в равновесных жидких фазах. Найдены пути регулирования параметров межфазных адсорбционных слоев за счет комплексообразования с низкомолекулярными ПАВ, образования интерполимерных комплексов с высокомолекулярными ПАВ, изменения рН и электролитного состава водной фазы.
Исследование влияния межфазного взаимодействия (физической и химической природы) на структурообразование в эмульсионных расплавах двухкомпонентных полимерных композиций было проведено на модельных системах поликарбонат - полибутилентерефталат, поликарбонат, полибутилентерефталат и полипропилен - жидкокристаллические полиэфиры (С.И. Белоусов, НИФХИ им. Л.Я. Карпова). Изучение влияния организации пограничного слоя на структуру и свойства армированных полимерных систем составляет содержание проекта, выполненного в ИХФ РАН под руководством Э.С. Зеленского. Проанализированы закономерности образования на поверхности стеклянных, базальтовых и углеродных волокон гибких углеводородных систем при модификации силоксанами с боковыми углеводородными группами разной длины и гибкости, а также атактическим полипропиленом. Такая модификация оказалась перспективной для создания регулируемой структуры границы раздела и приповерхностных слоев и, соответственно, получения армированных полимерных систем с прогнозируемыми механическими свойствами. Проблема прочности армированных полимерных систем рассмотрена в аспекте роли нелинейных эффектов в механизме их разрушения (В.Е. Юдин, ИВС РАН). Предложенные модели локализованного и делокализованного разрушения композиционных материалов основаны на статистической теории ветвящихся процессов. Введен новый, единый для широкого круга гетерогенных систем и типов процесса накопления критерий, который позволяет описать зависимость разрывного напряжения образца композита от масштабных соотношений между его отдельными структурными элементами (размерами неоднородности).