В данной работе будет рассмотрена возможность не только расчета параметров соединения, что позволит химикам – синтетикам еще до получения конкретного соединения предсказать его физико – химические свойства, но и будет предложен метод для расчета физиологической активности соединения. Ни в зарубежной, ни в отечественной литературе эти методы ранее в совокупности не рассматривались, и возможности перехода от одного к другому не исследовались.
В основе квантовой механики лежит уравнение Шредингера, играющее в ней такую же важную роль, как и уравнения Ньютона в классической механике. Также как и уравнения Ньютона, уравнение Шредингера не выведено ни из какой физической теории, а является постулатом, полученным в результате обобщения опытных фактов.
Для совокупности Nвзаимодействующих частиц с потенциальной энергией U и массами mk в декартовой системе координат оно имеет вид
где Ψ(x, y, z, t) – волновая функция совокупности координат системы частиц и времени, U – оператор потенциальной энергии. Суммирование производится по всем частицам.
Стационарные состояния удовлетворяют не зависящему от времени уравнению Шредингера:
Параметр Е есть собственное значение стационарного уравнения Шредингера. В результате решения стационарного уравнения Шредингера находят собственные (возможные) значения параметра Е и соответствующие ему решения – собственные функции.
Для любого уравнения Шредингера, соответствующего конкретной системе, существует бесконечное множество значений параметра Е. Эти значения могут быть как непрерывными (для свободно движущейся частицы), так и дискретными, если частицы локализованы в малой области пространства. Дискретные значения Е называют уровнями энергии.
Пользуясь операторной символикой, можно записать уравнение Шредингера в сокращенной форме:
ĤΨ = ЕΨ,
где Ĥ =
- оператор Гамильтона или гамильтониан системы частиц.1970 - 1980-е годы были временем очень быстрого развития вычислительных методов квантовой химии. В результате появилась возможность рассчитывать геометрию и оценивать стабильность промежуточных продуктов и переходных состояний, а также вычислять профили поверхности потенциальной энергии вдоль координаты реакции. Экспериментальное получение подобной информации для большинства реакций связано с преодолением значительных трудностей, вызванных многостадийным характером процессов, синхронным протеканием отдельных элементарных стадий и очень малым временем жизни промежуточных продуктов. Развитие вычислительных методов квантовой химии и появление быстродействующих ЭВМ позволили рассчитывать многие характеристики органических соединений, в том числе и нестабильных, а также переходных состояний. Точность этих расчетов получается вполне удовлетворительной по термохимическим стандартам. Поэтому квантовохимические расчеты в настоящее время используются в качестве одного из физико-химических методов исследования для получения данных, необходимых для установления механизмов сложных органических реакций.
Существующие методы математического моделирования "структура- активность" могут быть условно разделены на три группы.
Первая группа основана на использовании принципа линейности свободных энергий и включает в себя такие подходы, как метод Хэнча, метод Кубиньи и "диффузионный подход".
К этой же группе причисляют аддитивно- статистические методы Фри - Уилсона, Фуйита - Бана, Каммарата - Яу и им подобные. Для построения моделей, реализующих принцип линейности свободных энергий, используются методы регрессионного анализа.
Вторая группа объединяет методы, предназначенные для получения первоначальных представлений об изучаемом явлении посредством статистической обработки всей имеющейся информации, а также преобразования ее к виду, удобному для дальнейшего использования. Эта группа методов иногда называется методами "генерации гипотез". Она объединяет такие методы, как факторный анализ во всех его модификациях, методы линейного отображения, иногда к этой группе относят и аддитивно- статистические методы.
В третью группу включают методы, основанные на использовании алгоритмов теории распознавания образов, предназначенные для классификации объектов посредством разнообразных статистических и эвристических процедур. К этой группе относят различные методы дискриминантного анализа, порогового логического элемента и его модификации, методы теории алгебры логики.
1.1.1 Различие неэмпирических и полуэмпирических методов
На практике обычно пользуются как полуэмпирическими, так и неэмпирическими методами. Они различаются методикой вычисления матричных элементов, описывающих взаимодействие электронов между собой и электронов и атомных ядер в уравнениях. В полуэмпирических методах для этой цели используются приближенные эмпирические формулы и известные из эксперимента параметры атомов. В неэмпирических методах проводится непосредственный аналитический расчет матричных элементов.
Полуэмпирические расчеты в 80 - 90 годы чаще всего проводились в валентных приближениях ППДП, ЧПДП и ПДДП, ППДП/2, ППДП/БУ, МЧПДП, МПДП, АМ1 [6, 7, 8].
Характерными особенностями всех полуэмпирических методов являются следующие.
Некоторые группы электронов явным образом не рассматриваются. Например, в расчете могут учитываться только валентные электроны (валентное приближение) или только П - электроны (П- электронное приближение).
Некоторые члены гамильтониана не учитываются или выражаются через какие - либо эмпирические параметры.
Ряд интегралов, необходимых для расчета электронной энергии, либо принимается равным нулю, либо выражается через другие интегралы или эмпирические параметры.
Очевидно, что приближения полуэмпирических методов не могут быть произвольными. Основные положения, взаимодействия и эффекты, точно учитываемые в неэмпирических подходах, должны сохранятся и в полуэмпирических методах МО ЛКАО. С этой точки зрения возможен ряд уровней приближения.
Приближения, приводящие к тому, что результаты расчетов становятся неинвариантными относительно как вращения координатных осей, так и гибридизации АО.
Приближения, которые сохраняют инвариантность относительно вращения координатных осей, но нарушают инвариантность по гибридизации АО.
Приближения, инвариантные и относительно вращения координатных осей, и относительно гибридизации АО.
Приближения, сохраняющие инвариантность расчета при любых ортогональных преобразованиях базиса АО.
В неэмпирических методах все матричные элементы взаимодействия электронов и атомных ядер и электронов между собой вычисляются с помощью аналитического расчета необходимых интегралов в некотором базисе АО. Наиболее точно распределение электронной плотности в атомах можно передать с помощью слейтеровских АО, то есть функций типа exp(-αr), rexp(-αr), xexp(-αr), yexp(-αr). Однако со слейтеровскими орбиталями очень трудно вычислить интегралы, которые входят в фокиан для молекул. Поэтому в качестве базисных АО обычно берут гауссовы функции:
для s орбиталей: exp(-αr2);
для р орбиталей: xexp(-αr2), yexp(-αr2), zexp(-αr2);
для d орбиталей: x2exp(-αr2), y2exp(-αr2), z2exp(-αr2), xyexp(-αr2), xzexp(-αr2), yzexp(-αr2). [6, 7, 8].
Это так называемые примитивные гауссовые функции. С ними относительно легко вычислять матричные элементы, но, когда их мало, они плохо воспроизводят распределение электронной плотности в атомах и молекулах. В связи с этим гауссовых орбиталей приходится брать намного больше, чем слетеровских. Обычно используют так называемые сгруппированные базисы, в которых каждая базисная орбиталь представляет собой линейную комбинацию из нескольких примитивных гауссовых функций.
Для изучения реакционной способности и строения органических соединений наиболее широко используются базисы, предложенные Поплом и сотрудниками: минимальный базис ОСТ-3ГФ, валентно - расщепленные базисы 3-12ГФ, 4-31ГФ, 6-31 ГФ, валентно - расщепленные базисы с поляризационными орбиталями 6-31ГФ* и 6-31ГФ**, валентно - расщепленные базисы с диффузными s и р орбиталями 3-21+ГФ и 4-31+ГФ.
В основе современной квантовой химии лежит уравнение Шредингера для стационарных состояний. Его обычно решают в адиабатическом приближении, то есть в предположении, что ядерную и электронную волновые функции можно разделить и решать уравнения для движения ядер и электронов раздельно. В этом приближении уравнение Шредингера для электронной волновой функции записывается следующим образом:
, гдеĤ- гамильтониан системы, т.е. сумма операторов кинетической и потенциальной энергий,
Y = Y(x1, x2…xn)- волновая функция для системы из n частиц, которая зависит от их расположения в пространстве и спинов,
Е- полная электронная энергия.
Однако точно решить это уравнение удается лишь в случае одноэлектронных систем. Поэтому в квантовохимических расчетах используются приближенные методы. Среди них в 80- х годах наиболее широкое распространение получил метод Хартри - Фока, или метод самосогласованного поля (ССП). В этом методе полагается, что каждый электрон движется в поле атомных ядер, положение которых фиксировано в пространстве, и в эффективном (усредненном) поле других электронов.