Смекни!
smekni.com

Физико-химические методы определения фенола (стр. 2 из 7)

Фенолы являются более слабыми нуклеофилами, чем спирты. По этой причи-не они в отличие от спиртов не вступают в реакцию этерификации. Для получения сложных эфиров фенолов используют хлорангидриды и ангидриды кислот:

Фенилацетат

Дифенилкарбонат

3.2 Замещение в кольцо

Оксигруппа фенола очень сильно активирует ароматическое кольцо по отношению к реакциям электрофильного замещения. В качестве промежуточных соединений вероятнее всего образуются оксониевые ионы:

При проведении реакции электрофильного замещения в случае фенолов необходимо применять специальные меры для того, чтобы предотвратить полизамещение и окисление.

3.3 Нитрование

Фенол нитруется гораздо легче бензола. При действии на него концентрированной азотной кислоты образуется 2,4,6 – тринитрофенол (пикриновая кислота):

Пикриновая кислота

Наличие в ядре трех нитрогрупп резко увеличивает кислотность фенольной группы. Пикриновая кислота является, в отличие от фенола, уже довольно сильной кислотой. Наличие трех нитрогрупп делает пикриновую кислоту взрывчатой, она используется для приготовления мелинита. Для получения мононитрофенолов необходимо использовать разбавленную азотную кислоту и проводить реакцию при низких температурах:

Получается смесь о- и п-нитрофенолов с преобладанием о-изомера. Эта смесь легко разделяется благодаря тому, что только о-изомер обладает летучестью с водяным паром. Большая летучесть о-нитрофенола объясняется образованием внутримолекулярной водородной связи, в то время как в случае п-нитрофенола возникает межмолекулярная водородная связь.

3.4 Сульфирование

Сульфирование фенола осуществляется очень легко и приводит к образованию в зависимости от температуры преимущественно орто- или пара-фенолсульфокислот:


3.5 Галогенирование

Высокая реакционная способность фенола приводит к тому, что даже при его обработке бромной водой происходит замещение трех атомов водорода:

Для получения монобромфенола необходимо принимать специальные меры.

п-Бромфенол

3.6 Реакция Кольбе

Диоксид углерода присоединяется к феноксиду натрия по реакции Кольбе, представляющей собой реакцию электрофильного замещения, в которой электрофилом является диоксид углерода


Фенол Феноксид натрия Салицилат натрия Салициловая кислота

Механизм:

Действием на салициловую кислоту уксусного ангидрида получают аспирин:

Ацетилсалициловая кислота

Если оба орто-положения заняты, то замещение проходит по пара-положению:

Реакция проходит по следующему механизму:

3.7 Конденсация с карбонилсодержащими соединениями

При нагревании фенола с формальдегидом в присутствии кислоты образуется фенолформальдегидная смола:

Фенолформальдегидная смола

Конденсацией фенола с ацетоном в кислой среде получают 2,2 – ди (4-гидроксифенил) пропан, получивший промышленное название бисфенол:

Бисфенол

2,2 – ди (4-гидроксифенил) пропан-ди (4-оксифенил) диметилметан


Обработкой бисфенола фосгеном в пиридине получают лексан:

Лексан

В парисутствии серной кислоты или хлорида цинка фенол конденсируется с фталевым ангидридом с образованием фенолфталеина:

Фталевый ангидрид Фенолфталеин

При сплавлении фталевого ангидрида с резорцином в присутствии хлорида цинка происходит аналогичная реакция и образуется флуоресцеин:

Резорцин Флуоресцеин

3.8 Перегруппировка Кляйзена

Фенолы вступают в реакции алкилирования по Фриделю-Крафтсу. Например, при взаимодействии фенола с аллилбромидом в присутствии хлорида алюминия образуется 2-аллилфенол:


Этот же продукт образуется и при нагревании аллилфенилового эфира в результате внутримолекулярной реакции называемой перегруппировкой Кляйзена:


Аллилфениловый эфир 2-Аллилфенол

Реакция:

Проходит по следующему механизму:

Перегруппировка Кляйзена происходит также и при нагревании аллилвинилового эфира или 3,3 – диметил – 1,5 – гексадиена:


3.9 Поликонденсация

Поликонденсация фенола с формальдегидом (по этой реакции происходит образование фенолформальдегидной смолы:

3.10 Окисление

Фенолы легко окисляются даже под действием кислорода воздуха. Так, при стоянии на воздухе фенол постепенно окрашивается в розовато-красный цвет. При энергичном окислении фенола хромовой смесью основным продуктом окисления является хинон. Двухатомные фенолы окисляются еще легче. При окислении гидрохинона образуется хинон.

3.11 Кислотные свойства

Кислотные свойства фенола проявляются в реакциях со щелочами (сохранилось старинное название «карболовая кислота»):

С6Н5ОН + NaOH <-> C6H5ONa + Н2O

Фенол, однако, является очень слабой кислотой. При пропускании через раствор фенолятов углекислого или сернистого газов выделяется фенол – такая реакция позывает, что фенол – более слабая кислота, чем угольная и сернистая:

C6H5ONa + СO2 + Н2O -> С6Н5ОН + NaHCО3

Кислотные свойства фенолов ослабляются при введении в кольцо заместителей I рода и усиливаются при введении заместителей II рода.

4. Способы получения

Производство фенола в промышленном масштабе осуществляется тремя способами:

– Кумольный метод. Этим способом получают более 95% всего производимиого в мире фенола. В каскаде барботажных колонн кумол подвергают некаталитическому окислению воздухом с образованием гидропероксида кумола (ГПК). Полученный ГПК, при катализе серной кислотой, разлагают с образованием фенола и ацетона. Кроме того, ценным побочным продуктом этого процесса является α-метилстирол.

– Около 3% всего фенола получают окислением толуола, с промежуточным образованием бензойной кислоты.

– Весь остальной фенол выделяют из каменноугольной смолы.

4.1 Окислением кумола

Фенолы выделяют из каменноугольной смолы, а также из продуктов пиролиза бурых углей и древесины (деготь). Промышленный способ получения самого фенола С6Н5ОН основан на окислении ароматического углеводорода кумола (изопропилбензол) кислородом воздуха с последующим разложением получающейся гидроперекиси, разбавленной H2SO4. Реакция проходит с высоким выходом и привлекательна тем, что позволяет получить сразу два технически ценных продукта – фенол и ацетон. Другой способ–каталитический гидролиз галогензамещенных бензолов.


4.2 Получение из галогенбензолов

При нагревании хлорбензола и гидроксида натрия под давлением получают фенолят натрия, при дальнейшей обработке которого кислотой образуется фенол:

С6Н5-CI + 2NaOH -> С6Н5-ONa + NaCl + Н2O

4.3 Получение из ароматических сульфокислот

Реакция проводится при сплавлении сульфокислот с щелочами. Первоначально образующиеся феноксиды обрабатывают сильными кислотами для получения свободных фенолов. Метод обычно применяют для получения многоатомных фенолов:


4.4 Получение из хлорбензола

Известно, что атом хлора прочно связан с бензольным кольцом, поэтому реакцию замены хлора на гидроксильную группу проводят в жестких условиях (300 °С, давление 200 МПа):