При больших анодных перенапряжениях, когда
и намного превышает значение , из уравнения (1.5.5) следуетили
(1.5.10)Уравнение (1.5.10) также имеет вид уравнения Тафеля.
В области малых перенапряжений, где
намного меньше значения , можно разложить экспоненты в уравнении (1.5.5) и ограничиться первыми двумя членами разложения: (1.5.11)откуда
(1.5.12)Таким образом, вблизи равновесного потенциала должна наблюдаться линейная зависимость между
и .Из соотношения (1.5.12) видно, что чем больше ток обмена, тем меньше отклонение потенциала от его равновесного значения при данной плотности тока и наоборот. На основе уравнения (1.5.12) можно дать более строгое определение понятиям идеально поляризуемого и идеально неполяризуемого электродов. Так, идеально поляризуемый электрод – это такой электрод, плотность тока обмена на котором равна нулю:
. Если бы не было двойного слоя, любой сколь угодно малый ток вызвал бы бесконечно большое смещение потенциала. Идеально неполяризуемый электрод – это электрод, которому отвечает бесконечно большой ток обмена: . Реальный ток обмена всегда имеет некоторую конечную величину. Но если оказывается значительно больше протекающего через электрод тока , то согласно уравнению (1.5.12) изменением потенциала этого электрода можно пренебречь. Так как при условии, что , сдвиг потенциала электрода не должен превышать 2,5 мкВ. Поэтому в качестве электродов сравнения обычно выбирают электрохимические системы с достаточно большими токами обмена. Если , то уравнение (1.5.5) преобразуется: (1.5.13)Рассчитанная по (1.5.13) кривая
симметричная относительно начала координат (рис. 1.5.1). При отклонениях от 0,5 нарушается симметричность -кривой. Пунктиром на рис. 1.5.1 показаны поляризационные кривые, отвечающие зависимостям и . При .Рис. 1.5.1 - Поляризационная кривая стадии разряда – ионизации при
иПоскольку в широком интервале потенциалов зависимость тока от перенапряжения носит экспоненциальный характер, обычно поляризационную кривую изображают в полулогарифмических координатах (рис. 1.5.2). Экстраполяция прямолинейных участков кривых для катодного и анодного перенапряжения до
позволяет рассчитать ток обмена .Рис. 1.5.2 - Поляризационная кривая стадии разряда – ионизации при
и в полулогарифмических координатахНа практике редко встречаются простые электрохимические системы, для которых кинетические закономерности стадии разряда – ионизации можно было бы экспериментально изучить как вблизи равновесного потенциала, так и при значительном удалении от равновесного состояния. Это связано с различной зависимостью от потенциала диффузионной стадии электродного процесса и стадии разряда – ионизации. С одной стороны, после достижения предельного диффузионного тока скорость диффузионной стадии не зависит от потенциала. С другой стороны, по мере удаления от равновесного потенциала скорость стадии разряда – ионизации очень резко возрастает [7].
1.6 Поляризационные диаграммы потенциал – pH
Теория коррозии – это не рядовое приложение кинетики и термодинамики электродных реакций, а одно из самых сложных направлений электрохимии. В настоящее время рождается новый метод исследования коррозии с помощью поляризационных диаграмм потенциал – pH.
Экспериментальное определение координат поляризационной диаграммы потенциал – pH можно осуществить, используя методику Марселя Пурбе.
Рис. 1.6.1 - Метод построение экспериментальных диаграмм потенциал – pH: I – общая коррозия, II – питтинговая коррозия, III – неустойчивая пассивность, IV – пассивность
На рис. 1.6.1. схематически показаны пять потенциодинамических поляризационных кривых для железа в растворе хлорида при pH 5, 7, 9, 11 и 13 соответственно. Совмещением особых точек этих кривых справа можно получить поляризационную диаграмму железа, на которой отображены экспериментальные условия иммунности (невосприимчивости), общей коррозии, питтинговой коррозии, пассивности и неустойчивой пассивности, как функцию потенциала и pH. Потенциал, разделяющий области невосприимчивости и общей коррозии, - стационарный или коррозионный (Ec) потенциал. Потенциал, разделяющий область общей коррозии и пассивности, - потенциал пассивации (Ea). При потенциалах положительнее Ea на металле образуется защитная пленка окислов. Потенциал Epp (потенциал питтингообразования) – потенциал, выше которого металл подвергается питтинговой коррозии. При питтинге наблюдается очень быстрое активное растворение металла на определенных участках его поверхности (в коррозионных язвах, или питтингах), в то время как другие участки поверхности металла остаются в пассивном состоянии. Ep – критический защитный потенциал (потенциал репассивации питтингов). При потенциалах отрицательнее Ep уже имеющиеся питтинги не будут расти дальше и поврежденная пассивационная пленка будет восстановлена. Линия, отвечающая потенциалам репассивации питтингов Ep, разделяет область пассивности на две части: верхнюю – область неустойчивой пассивности, в которой уже имеющиеся язвы продолжают расти, и нижняя- полной (устойчивой) пассивности, в которой ранее образовавшиеся питтинги восстанавливают свою пассивность.
Поляризационная диаграмма потенциал – pH реагирует на электродные потенциалы появления новых фаз и фазовые переходы на поверхности металлов, указывая границы начала и конца фазовых превращений. Поэтому поляризационные диаграммы имеют все признаки диаграммы фазового равновесия. Для идентификации фазовых превращений на поляризационных диаграммах их совмещают с соответствующими равновесными диаграммами потенциал – pH[6].
2. Расчет и построение равновесной диаграммы потенциал – pH для системы Cu – H2O
В системе Cu – H2O присутствуют Cu, Cu2+, Cu2O, CuO и Cu2O3.
Реакции окисления меди до оксидов приведены ниже:
(1) Cu0 + 0,5O2 = CuO
= - 129 365 Дж/моль(2) 2Cu0 + 0,5O2 = Cu2O
= - 150 548 Дж/моль(3) 2Cu0 + 1,5O2 = Cu2O3
= ?Для (3) реакции:
= 100 Дж/моль·К для Cu2O3 = 33,149 Дж/моль·К для Cu = 205,036 Дж/моль·К для O2 = - 355 000 Дж/моль·КОтсюда по уравнению
находим = - 273 392 Дж/моль(4) Cu2O + 0,5O2 = 2CuO
= ?