Смекни!
smekni.com

Камеры хлопьеобразования (стр. 2 из 2)

При скорости восходящего потока 0,65 ... 1,6 (для вод мутностью 50 ... 250 мг/л) и 0,8 ... 2,2 мм/с (для вод мутностью 250 ... 1500 мг/л) образуется и поддерживается во взвешенном состоянии слой осадка высотой не менее 3 м, частицы которого являются центрами коагуляции. Время пребывания воды в камере не менее 20 мин. Применение камер хлопьеобразования со слоем взвешенного осадка позволяет увеличить расчетную скорость осаждения взвеси в отстойниках при осветлении вод средней мутности на 15...20% и для мутных вод— на 20%. Передача воды из камеры в отстойник осуществляется при скорости ее движения до 0,1 м/с для мутных вод и до 0,05 м/с — для цветных.

При расчете камеры первоначально определяют ее объем по времени пребывания воды и площадь ее верхней части по скорости восходящего движения. Затем находят габариты широкой и узкой частей камеры, вычисляют их объемы, складывают и проверяют фактическое время пребывания воды в ней.

Водоворотная камера хлопьеобразования (рис. 6.2,а) совмещается с вертикальным отстойником и располагается в центральном стакане. Вода подается в верхнюю часть камеры соплом, расположенным на расстоянии 0,2 диаметра камеры от стенки на глубине 0,5 м от поверхности воды, или соплами, закрепленными в ее центре в виде неподвижного сегнерова колеса. Выходя из сопел со скоростью 2 ... 3 м/с, вода приобретает вращательное движение вдоль ее стенок и движется сверху вниз. Для гашения вращательного движения воды при ее переходе в отстойник, которое могло бы ухудшить его работу, в низу камеры устанавливают гаситель в виде крестообразной перегородки высотой 0,8 м с ячейками 0,5x0,5 м. Время пребывания воды в камере принимают 15 ... 20 мин, а ее высоту 3,5 ... 4 м.

Область применения водоворотных камер определяется применимостью вертикальных отстойников, т. е. качество обрабатываемой воды практически любое при суточной подаче до 5—8 тыс. м3.

При расчете водоворотных камер первоначально находят ее площадь по времени пребывания воды, а затем зная ее высоту, определяют диаметр.

Для интенсификации процесса хлопьеобразования при коагулировании примесей маломутных и цветных вод в свободном объеме А. Б. Гальберштадтом предложена гравийная камера с псевдоожиженной зернистой загрузкой, позволяющей в результате оптимизации параметров турбулентности потока увеличить число взаимных контактов первичных агрегатов и снизить кинетическую энергию их взаимодействия. Оптимальные условия протекания процесса хлопьеобразования создаются при использовании зернистой загрузки из антрацита (керамзита, песка и др.) с эквивалентным диаметром 0,6 ... 0,9 мм и высотой слоя в статических условиях 0,3 ... 0,5 м, работающей при расширении 10 ... 15%, что соответствует восходящей скорости потока 2,6 ... 4,0 мм/с. Первоначально контактный слой антрацита покоится на слое гравия крупностью 5 ... 20 мм высотой 0,3 ... 0,4 м.

Примерно аналогичная конструкция контактной камеры хлопьеобразования (без поддерживающего гравийного слоя) предложена М. Г. Журбой. Для создания псевдоожиженного слоя использованы вспененные гранулы полистирола марки ПСВ (ОСТ 6—05—202—83) крупностью 0,5 ... 4,5 мм, удерживаемые в верхней части камеры дренажной сеткой. Первоначальная высота слоя гранул около 1 м. Восходящая скорость движения воды в камере 5 ... 6 мм/с.

Применение на практике вышеописанных контактных камер хлопьеобразования позволяет увеличить в 3 ... 4 раза нагрузку на единицу объема камеры, снизить на 20 ... 25% расход коагулянта, уменьшить примерно в 1,5 раза продолжительность осветления воды в отстойниках.

Хорошо себя зарекомендовала на практике при обработке маломутных цветных вод камера хлопьеобразования зашламленного типа с рециркуляцией шлама, предложенная ЛНИИ АКХ им. К. Д. Памфилова (рис. 6.3). Обрабатываемая вода вводится в нижние части секций камеры со скоростью 1 м/с и поступает в центрально расположенные эжектируемые вставки, засасывая воду с осадком из объема секций. Таким образом, в каждой секции происходит непрерывное движение взвешенного осадка, обеспечивающее контактирование агрегативно неустойчивых примесей и их агрегацию. Постепенно обрабатываемая вода переходит из камеры в камеру и далее в отстойник. Время пребывания воды в камере 20 ... 30 мин.

Флокуляторы

В механических камерах хлопьеобразования (флокуляторах), рекомендуемых СНиП при обработке мутных вод и применяемых на крупных водоочистных комплексах (рис. 6.4), плавное перемешивание воды для завершения процесса коагулирования ее примесей осуществляется механическими пропеллерными или лопастными мешалками. Мешалка может иметь одну или несколько лопастей. Флокуляторы обычно встраивают в горизонтальные отстойники и рассчитывают на время пребывания воды в них 30 ... 40 и до 60 мин при реагентом умягчении. Число мешалок принимают 3 ... 5. Скорость движения воды во флокуляторе уменьшается по ходу потока от 0,5 до 0,1 м/с за счет сокращения числа оборотов мешалок или уменьшающейся по ходу воды площади их лопастей. Скорость вращения мешалок принимают 0,3 ... 0,55 м/с в зависимости от качества исходной воды.

Флокуляторы устраивают с мешалками на вертикальной или горизонтальной оси. В первом случае их обычно оборудуют моторами с переменной скоростью вращения, во втором — один двигатель обслуживает несколько мешалок. Мешалки располагают в начале коридора отстойники в два ряда и более и разделяют перегородками для циркуляции воды. Флокуляторы выполняют различной формы в плане: квадратными, круглыми и прямоугольными. Оптимально применение пропеллерных мешалок, создающих аксиальные потоки, что ослабляет процесс разрушения образовавшихся хлопьев.

Исследования флокуляторов, выполненные в МГСУ (Г. И. Николадзе, Ч. С. Лай), показали, что число цилиндрических секций камеры следует принимать не менее трех с зигзагообразной траекторией движения воды, структура градиента скорости должна быть убывающей по ходу воды от 100 до 25 ... 50 с-1 в последней секции, мешалки целесообразно размещать на вертикальной оси. Данные табл. 6.1 дают представление о величинах критерия Кэмпа при обработке вод разного состава.

Таблица 6.1

Схема очистки воды Критерий GT
Маломутные цветные воды, рН = 5,5 ...6,5, обрабатываемые сульфатом алюминия 40*103…55*10
То же, при рН = 4,5 ... 5,5, обрабатываемые хлорным железом 100*103…150*103
Маломутные цветные воды, рН = 5,5 ... 6,8, обрабатываемые ПАА 200*103…300*103
Воды средней мутности и средней цветности, рН=6...7, обрабатываемые сульфатом алюминия 25*103…36*103
Воды средней мутности, рН = 6,6 ... 7,2, обрабатываемые хлорным железом 35*103…50*103

Преимуществами флокуляторов по сравнению с камерами гидравлического типа являются небольшие потери напора, конструктивная простота, оптимизация процесса хлопьеобразования адекватно качеству обрабатываемой воды.

К числу недостатков флокуляторов следует отнести дополнительный расход электроэнергии, наличие в воде деталей, к материалам на изготовление которых предъявляются высокие требования, что удорожает сооружение в целом.

Методика расчета флокуляторов аналогичная принятой для перегородчатых камер хлопьеобразования

Аэрофлокуляторы

Хорошее хлопьеобразование достигается барбатированием обрабатываемой воды сжатым воздухом. При этом одновременно с хлопьеобразованием происходит насыщение воды кислородом воздуха и удаление оксида углерода. Равномерное распределение воздуха в массе обрабатываемой воды достигается либо системой из пористых или перфорированных труб (рис. 6.5), либо ложным дном из пористых плит. Глубина слоя воды принимается в пределах 2,5—4,5 м, интенсивность подачи воздуха варьируется в пределах 0,05— 0,06 л/(с-м2), давление воздуха в подающем трубопроводе должна быть порядка 5 МПа. Воздухораспределительные трубы, располагаемые поперек камеры с шагом 0,2—0,3 м, на расстоянии 1,0 м от дна, имеют по нижней образующей отверстия диаметром 2 мм при шаге 0,125—0,15 м. По А. В. Бутко преимущества аэрофлокуляторов заключаются в гибкости регулирования процесса хлопьеобразования адекватно качеству обрабатываемой воды, низкой стоимости и простоте устройства. К числу недостатков следует отнести дополнительный расход электроэнергии на компрессию воздуха.


Рис. 6.5. Схема аэрофлокулятора.

1 и 2 — подача исходной воды н воздуха; 3 — камера аэрофлокулятора; 4 и 8 — воздухо- и водораспределительная система; 5 — затопленный водослив; 6 — струенаправляющая перегородка; 7 — горизонтальный отстойник


ЛИТЕРАТУРА

Алексеев Л. С., Гладков В. А. Улучшение качества мягких вод. М., Стройиздат, 1994 г.

Алферова Л. А., Нечаев А. П. Замкнутые системы водного хозяйства промышленных предприятий, комплексов и районов. М., 1984.

Аюкаев Р. И., Мельцер В. 3. Производство и применение фильтрующих материалов для очистки воды. Л., 1985.

Вейцер Ю. М., Мииц Д. М. Высокомолекулярные флокулянты в процессах очистки воды. М., 1984.

Егоров А. И. Гидравлика напорных трубчатых систем в водопроводных очистных сооружениях. М., 1984.

Журба М. Г. Очистки воды на зернистых фильтрах. Львов, 1980.