Смекни!
smekni.com

Изучение и анализ производства медного купороса (стр. 13 из 16)

б) Растворимые примеси

Примеси, присутствующие в растворе, оказывают различное влияние на скорость образования центров кристаллизации, одни из них резко повышают скорость кристаллизации, другие действуют как поверхностно – активные вещества на поверхности микрозародышей и препятствуют кристаллизации пересыщенных растворов.

Для определения расчетных технологических параметров работы оборудования проведены материально – тепловые расчеты. В расчетах приняты номинальные значения параметров.

Уравнение материального баланса

ύ0iρ0i = ύsiρci + W, (11)

где ύ0, ύs– объемный расход исходного раствора и суспензии, м3/ч;

ρ0, ρc– плотностьисходного раствора и суспензии, кг/м3;

W – массовый расход вторичного пара, кг/ч;

i – индекс, обозначающий стадию кристаллизации.

Расход вторичного пара после преобразования уравнения

Wi = ύ0iρ0i– ύsiρci(12)

Расход вторичного пара на каждую стадию равен:

Первая стадия W1 = 4,69 х 1155 – 1,85х 1395 = 2836 кг/ч;

Вторая стадия W2 = 1,49х1200 – 0,75х1400 = 738 кг/ч;

Третья стадия W3 = 2,44х1255 – 1,63х1380 = 813 кг/ч/

Уравнение теплового баланса кристаллизатора:

S0i C0i t0i + λ Sкр.i + φгр.i = Wi ίi + (S0i – Sкр. i – Wi)* Cмi ti + Sкр.i Cкрti + φгрCкi tкi (13)

откуда расход греющего рара с учетом его неполноты конденсации равен

φгр. i = 1,05

, (14)

где S0i, Sкрi – массовый расход исходного раствора и кристаллического медного купороса, кг/ч.

S0 = υ0 ρ0 (15)

λ = – 315,3 кДж/кг – теплота кристаллизации медного купороса;

C0i, Cмi, Cкр, Cкi– теплоемкость исходного раствора, маточного раствора, кристаллов медного купороса, конденсата греющего пара, кДж/кгС0;

t0i – температура исходного раствора, 0С;

ti = 450С, температура кристаллизации;

tк = tгр – 2 = 105 – 2 = 103 0С;

tni = ti – δ – температура вторичного пара, 0С;

tni = 45 – 5 = 400С;

δ = 50 С – температурная депрессия упаренного раствора;

ϊ= 2574 кДж/кг – теплосодержание вторичного пара при температуре;

ϊг = 2684,1 кДж/кг – теплосодержание греющего пара;

1,05 – коэффициент, учитывающий неполноту конденсации греющего пара.

По формуле (14) рассчитаем расход греющего пара на каждую стадию кристаллизации.

I стадия выпарки

φгр. 1= 1,05*

= 3048,5 кг/ч;

φгр. 2= 1,05

= 832 кг/ч;

φгр. 3= 1,05

=990 кг/ч.

Определим напор и выберем циркуляционный насос.

Циркуляционный насос, установленный в наружном циркуляционном контуре, должен обеспечить требуемую подачу раствора для преодоления гидростатического давления, возникающего за счет разности плотностейй суспензии внутри аппарата и маточного раствора в наружном контуре.

В днище кристаллизатора установлено сопло, которое вместе с центральной циркуляционной трубой образует струйный насос, обеспечивающий циркуляцию суспкнзии по внутреннему контуру.

Определяющим геометрическим параметром струйного насоса является отношение площади поперечного сечения камеры смешения (центральной циркуляционной трубы) к площади поперечного сечения выходного отверстия сопла. Оптимальное значение отношения этих сечений для струйного насоса без диффузора определяем из уравнения

, (16)

n =

, (17)

где υн – удельный объем инжектируемой среды – суспензии на входе в сечение между соплом и нижним торцом циркуляционной трубы, м3/кг.


υн= 1/ρс, (18)

где υс – удельный объем смешанного потока на выходе из центральной циркуляционной трубы

υс = 1/ρс, (19)

υр – удельный объем рабочей среды, маточного раствора, подаваемого циркуляционным насосом в сопло, м3/кг

Подставляя значения в формулы (18, 19) имеем

υс/ υр = ρм/ ρс = 0,786;

υн/ υр = ρм/ ρс = 0,786.

φ2 = 0,975 – коэффициент скорости в центральной циркуляционной трубе (камере смешения)

φ4 = 0,925 – коэффициент скорости во входном сечении камеры смешения (во входном нижнем поперечном сечении центральной трубы).

Подставляя значения параметров в формулу (16) имеем

=

=1,612 (1+7,27)2 – 0,628*1,013 *7,272= 76,6.

Расход циркулирующей по внутреннему контуру суспензии равен

υц = (1 + u) υн.ц=(1+7,27) 92,5 = 765 м3/ч,

где u – коэффициент инжекции, кг/кг;

υн.ц – подача насоса, м3/ч.

Расчетное расстояние от выходного сечения сопла до входного сечения камеры смешения определим из следующего уравнения

l с =

=
,

d – опытная константа.

Рассчитаем длину цилиндрической части камеры смешения

lкц = (6 – 10) dm = (6 – 10) 350 = 2100 – 3500 мм,

где dm – диаметр центральной циркуляционной трубы, мм.

Найдем рабочий объем зоны кристаллизации

υк = υ3 – υо.к = 11 – 2,5 = 8,5 м3,

где υ3 = 11 м3 – общий объем, заполненный раствором в рабочем режиме;

υо.к = 2,5 м3 – объем осветленного маточного раствора.

Общий тепловой поток в конденсаторе равен

Q1= r

= 2406,5
1895,8 кВт;

Q2 = 2406,5

кВт;

Q3 = 2406,5

кВт.

Производительность вакуум насоса следующая

υвн =

=
м3/с = 0,7м3/мин, зимой;

υвн =

м3/с = 1,3 м3/мин, летом,

где Rв = 288,4 Дж/кг*град – газовая постоянная для воздуха;

Р – давление абсолютное паровоздушной смеси на выходе из эжектора, Па;

РH2O – парциальное давление водяных паров при температуре паровоздушной смеси, Па.

При рассмотрении работы вакуум-выпарной установки были замечены следующие зависимости:

– средний размер кристаллов, получаемых в выпарном вакуум – кристаллизаторе с двойным контуром, зависит от гидравлического и температурного режимов в аппарате;

– по химическому составу готовый продукт, как правило, отвечает требованиям соответствующего сорта, отклонения могут возникать из-за повышенного содержания мышьяка в исходном растворе;

– минимальный расход осветленного маточного раствора, при котором обеспечивается устойчивая циркуляция суспензии в корпусе аппарата, зависит от диаметра сопла струйного насоса, концентрации и крупности циркуляционных кристаллов;

– отложений накипи на поверхности теплообмена в греющей камере не обнаружено;

– один раз в смену должна осуществляться промывка стенок сепаратора небольшим количеством воды, подаваемой в разбрызгивающие устройства;

– с целью понижения содержания мышьяка требуется контрольная фильтрация исходного раствора от дисперсных взвесей.

В результате расчетов можно сделать вывод о том, что рассматриваемый аппарат способен обеспечить требуемую мощность и может использоваться для получения медного купороса.

3.4 Автоматизация и контроль производства

Автоматизация производства позволяет увеличить производительность оборудования, снизить расходные коэффициенты исходного сырья и материалов, а также обеспечить безопасность персонала на рабочих местах.

3.4.1 Технические данные, контролируемые СУТП

Нейтрализация меди в сернокислых растворах предназначена для получения насыщенного раствора сернокислой меди (медного купороса). Процесс получения насыщенного раствора сернокислой меди – глубокая нейтрализация свободной серной кислоты, содержащейся в отработанном электролите ЦЭМ и маточных растворов никелевого отделения купоросного цеха.

3.4.2 Система управления

Система управления предназначена для контроля технологических параметров и для управления процессом нейтрализации. Система управления находится в герметичных шкафах. Она включает в себя:

а) Управляющий контроллер;

б) Аппаратура сбора информации: оптомодули ввода, оптомодули вывода, оптодоска ввода для нейтрализатора; оптодоска ввода для баков;

в) Аппаратура сбора данных. Модули сбора данных АДАМ‑4017;

г) Интерфейсная аппаратура: модули конвертеры RS 232‑RS485 АДАМ‑4520, соединительные провода и кабели;

д) Аппаратура контроля технологических параметров: систему датчиков измерения уровня, систему датчиков измерения расхода воздуха и электролита, систему датчиков измерения давления;