Смекни!
smekni.com

Термодинамика химической и электрохимической устойчивости сплавов системы Ni-Si (стр. 7 из 7)

V.

VI.

VII.

VIII.

IX.

X.

XI.

XII.

XIII.

XIV.

XV.

XVI.

XVII.

XVIII.

XIX.

XX.

XXI.

Область I - область иммунности γ-фазы, интерметаллидов и чистого кремния, когда сплав не подвергается коррозии. Выше линии 1 кремний термодинамически неустойчив и окисляется до кремнезема (

) в кислых средах и до
в щелочных средах, интерметаллиды и γ-фаза остаются термодинамически устойчивыми фазами. Выше линии 3 происходит последовательное диспропорционирование
,
и так далее вплоть до
. Области XIV, XVIи XVII - области термодинамической устойчивости
. В кислых средах он неустойчив и распадается с образованием
и свободных ионов никеля
. Области XVII, XVIII и XIX отвечают образованию оксидов никеля
. В областях транспассивности - XX и XXI - происходит перепассивация сплава по никелю. Коррозия сплава происходит во всех областях, находящихся правее линии 13, а также избирательная коррозия в областях XVи XVI.

Состав образующейся пассивационной пленки может быть разным. Если в сплаве достаточно много кремния, то образуется сплошная пассивационная оксидная пленка в виде

. Если кремния недостаточно для образования сплошной пленки из кремнезема, пассивационная пленка представляет из себя
. В случае недостатка кремния даже для образования
, в качестве пассивационной пленки выступает оксид никеля
с включениями из
. Сравнение диаграмм, построенных при различных значениях активностей ионов в растворе, показывает, что с уменьшением активностей ионов снижаются потенциалы растворения компонентов сплава и потенциал перепассивации сплава по никелю. Области активной коррозии расширяются, а области пассивности наоборот уменьшаются и сдвигаются в более кислую область. Области устойчивости
XIVи XVIтоже имеют тенденцию к уменьшению. Линии
и
на диаграммах (рис.2.3-2.5) определяют электрохимическое поведение воды (см. табл.2.5). В области ниже линии
происходит катодное восстановление воды с выделением водорода. Область между линиями
и
определяет электрохимическую устойчивость воды. Выше линии
происходит окисление воды с выделением кислорода на аноде.

2.5 Обсуждение результатов

Построена диаграмма состояния Ni-Si-Oи проанализирована химическая устойчивость никель-кремниевых сплавов. Установлено, что никель-кремниевые сплавы окисляются кислородов воздуха в нормальных условиях. Подтверждено, что окисление никеля из сплава на воздухе заканчивается образованием фазы нестехиометрического состава NiOx, что подтверждается диаграммой состояния Ni-O (см. рис.1.4.). Однако установлено, что в нормальных условиях и при повышенной температуре оксид NiO2 не образуется, а его образование возможно лишь при давлениях порядка 1030 атм.

Построены диаграммы рН-потенциал системы Ni-Si-H2O и проанализирована электрохимическая устойчивость сплавов Ni-Si. Они свидетельствуют о высокой коррозионной стойкости никель-кремниевых сплавов. Установлено, что область активного растворения сплава при высоких активностях ионов достаточно мала и сплав подвергается коррозии в сильно щелочных средах, а в кислых и нейтральных на его поверхности образуется пассивирующая пленка.

Выводы

1) В рамках обобщенной теории "регулярных" растворов рассчитаны температурные зависимости энергий смешения компонентов бинарной системы Ni-Si.

2) Определены равновесные характеристики фаз в области комнатных температур, проверена адекватность полученной модели.

3) Рассчитаны активности компонентов системы Ni - Siпри 250С.

4) На основании построенной при 250 С диаграммы состояния Ni-Si-O проанализирована химическая устойчивость никель-кремниевых сплавов.

5) На основании постоенных диаграмм рН-потенциал системы Ni-Si-H2O при 25 0С и различных активностях ионов в растворе проанализирована электрохимическая устойчивость сплавов Ni-Si, определены области различного коррозионного поведения.

Список литературы

1. Аллотропные металлические сплавы, под ред. Ф.Е. Люборского. М.: Металлургия, 1987.584 с.

2. Глезер А.М., Молотилов Б.В. Структура и механические свойства аморфных сплавов. М.: Металлургия, 1992.207 с.

3. Самсонов Г.В., Дворина Л.А., Рудь Б.М. Силициды. М.: Металлургия, 1979.272 с.

4. Диаграммы состояния двойных металлических систем: Справ. изд. в 3 томах, под общей редакцией Н.П. Лякишева. М.: Машиностроение, 1997-2000 гг

5. Тюрин А.Г. Термодинамика химической и электрохимической устойчивости сплавов, часть I. Челябинск, 2004.86 с.

6. Тюрин А.Г. Термодинамика химической и электрохимической устойчивости сплавов, часть II, Челябинск, 2004.90 с.

7. Мосунова Т.В. Термодинамика химической и электрохимической устойчивости сплавов системы Co-Si: дипломная работа // рук. Тюрин А.Г. Челябинск, 2001.56 с.

8. Тюрин А.Г. Моделирование термодинамических свойств растворов: Учебное пособие; Челябинск: ЧелГУ, 1997.74 с.

9. Тимошенко Т.А. Химические и фазовые равновесия в системе Al - Mn. Курсовая работа, рук. Тюрин А. Г.; Челябинск: ЧелГУ, 2006.25 с.

10. Николайчук П.А. Термодинамика химической и электрохимической устойчивости медно-никелевых сплавов: дипломная работа // рук. Тюрин А.Г. Челябинск, 2007.67 с.

11. Рузинов Л.П., Гуляницкий Б.С. Равновесные превращения металлургических реакций. М.: Металлургия, 1975.416 с.

12. Гельд П.В., Сидоренко Ф.А. Силициды переходных металлов четвертого периода. М.: Металлургия, 1971.582 с.