Смекни!
smekni.com

Определение термодинамических активностей компонентов бронзы БрБ2 (стр. 5 из 6)

Рис. 2.1. Зависимости энергий смешения компонентов системы Cu – Ni от температуры.


2.2 Расчёт купола расслаивания твёрдого раствора Cu–Ni

Для проверки адекватности модели, использованной при решении, а следовательно и правильности определения значений энергий смешения необходимо решить обратную задачу – по известным температурным зависимостям величин Q рассчитать координаты купола расслаивания и сравнить его со снятым с диаграммы состояния. Фактически, необходимо решить систему относительно x, N и T.

В соответствии с правилом фаз Гиббса, система Cu – Ni имеет одну степень свободы. Это означает, что только один из параметров x, N, T является независимым. Для однозначного решения необходимо задавать один параметр и, решая систему (2.8), находить остальные.

Для учёта зависимостей

и
от температуры необходимо провести аппроксимацию этих функций полиномами. В рамках этой работы было проверено два способа аппроксимации.

Способ №1. Результаты аппроксимации зависимостей Q=f(T) представлены в таблице 2.3. Там же приведены значения полученных коэффициентов достоверности аппроксимации (квадратов коэффициентов корреляции).

Табл. 2.3. Аппроксимация зависимостей Q=f(T).

Линия Полином R2
1 Q = 33,285T - 17925 0,7556
Q = -0,1902T2 + 237T - 72123 0,7885
Q = 0,0128T3 - 20,674T2 + 11166T - 2E+06 0,9489
Q = -0,0001T4 + 0,2512T3 - 211,76T2 + 79045T - 1E+07 0,9586
Q = -1E-05T5 + 0,0294T4 - 31,331T3 + 16641T2 - 4E+06T + 5E+08 1
2 Q = -31,278T + 29506 0,9218
Q = 0,2428T2 - 291,32T + 98689 0,9959

Видно, что для линии 1 высоких значений R2 удаётся достичь только при больших степенях полинома. К сожалению, при этом не очень точно вычисляются их коэффициенты. К тому же, с такими зависимостями трудно работать. Всё это послужило причиной того, что от данного способа автор работы отказался.

Способ №2. Было принято решение разделить функции на три части соответствующие температурам

для первой части,
для второй и
для третьей (на рис. 2.1 эти части разделены вертикальными прямыми). На каждом из этих отрезков зависимость можно аппроксимировать полиномом меньшей степени. Результаты приведены в таблице 2.4.

Табл. 2.4. Аппроксимация частей зависимости Q=Q(T).

Линия Часть Полином R2
1 1 Q = 76,812T - 39259 0,9437
Q = -1,2995T2 + 1371,1T - 361006 1
2 Q = -46,012T + 24707 1
3 Q = 51,263T - 28567 0,9981
Q = -0,1545T2 + 228,27T - 79216 1
2 1 Q = -51,085T + 39360 0,9991
Q = -0,1052T2 + 53,71T + 13310 1
2 Q = -27,883T + 27204 1
3 Q = -13,086T + 19091 0,9994
Q = 0,0224T2 - 38,784T + 26444 1

Задав таким образом зависимости Q=f(T) как полиномы второй степени и зафиксировав один из параметров x, N, T, нужно решить систему (2.8). В этом случае система будет состоять из двух трансцендентных уравнений, и решить их совместно можно только численными методами. Автору работы не удалось этого сделать.

Поэтому было принято решение пожертвовать точностью аппроксимации функций Q=f(T) и определить их как линейные зависимости. В этом случае Q=aT+b и температура будет входить в уравнения системы (2.8) только в первой степени, что позволяет исключить её, как неизвестное.

Воспользуемся условными обозначениями, которые уже были использованы ранее.

Пусть

, а
. Тогда первое уравнение системы (2.9) запишется в виде:

(2.15)

Если перенести все слагаемые, содержащие Т, в левую часть, а все остальные – в правую часть уравнения, то получится:

(2.16)

Осталось только выразить температуру в явном виде:

(2.17)

Аналогично нужно выразить температуру и из второго уравнения системы (2.9):

(2.18)

(2.19)

(2.20)

Приравняв правые части равенств (2.17) и (2.20) и умножив их на -1, приведём уравнение к окончательному виду:

(2.21)

Параметра а и b определим из данных таблицы 2.4. Чтобы решить трансцендентное уравнение (2.21), нужно задаться одним из параметров x, или n и численными методами подобрать второй параметр, а затем определить и температуру по любому из уравнений (2.17) или (2.20).

Для решения была использована надстройка «поиск решения» пакета MicrosoftExcel. Результаты решения представлены в таблице 2.5.

Табл. 2.5. Рассчитанный купол расслаивания твёрдого раствора при разных температурах

t, oC Состав α-фазы (Cu) Состав γ-фазы (Ni)
x1 x2 N1 N2
0 0,727 0,273 2,8E-06 0,999997
25 0,723 0,277 0,000014 0,999986
40 0,72 0,28 0,000035 0,999965
83 0,71 0,29 0,00027 0,99973
116 0,70 0,30 0,001 0,999
141 0,69 0,31 0,002 0,998
161 0,68 0,32 0,004 0,996
178 0,67 0,33 0,007 0,993
191 0,66 0,34 0,010 0,990
203 0,65 0,35 0,014 0,986
241 0,60 0,40 0,042 0,958
261 0,55 0,45 0,061 0,939
279 0,50 0,50 0,077 0,923
307 0,45 0,55 0,128 0,872
322 0,40 0,60 0,174 0,826
331 0,35 0,65 0,224 0,776
334 0,30 0,70 0,273 0,727
334 0,285 0,715 0,285 0,715

Сравнение данных таблиц 2.1 и 2.5 можно провести визуально, нанеся данные на один график. Сравнение проведено на рисунке 2.2.

Рис. 2.2 Экспериментальный (1) и расчётный (2) купол расслаивания твёрдого раствора Cu – Ni

Из рисунка 2.2 видно, что экспериментальный и расчётный купол расслаивания твёрдого раствора Cu – Ni близки. По экспериментальным данным, критическая температура несмешиваемости равна 334°С.

Это позволяет говорить о том, что температурная зависимость Q=f(T) рассчитана правильно, и экстраполировать её до области комнатных температур.

2.3 Вычисление термодинамических активностей меди и никеля в бинарной системе при 25°С

Воспользовавшись уравнениями для Q=f(T) из таблицы 2.4, с использованием уравнений (1.3) и (1.6) можно рассчитать активности меди и никеля в твёрдом растворе Cu – Ni в зависимости от мольного содержания компонентов в нём.

Для расчётов использована компьютерная программа, текст которой представлен в приложении Б. Результаты представлены в таблице 2.6.

Табл. 2.6 Активности меди и никеля в бинарной системе при 25°С

xCu xNi aCu aNi xCu xNi aCu aNi
0,01 0,99 101,71 0,99 0,51 0,49 0,10 5,67
0,02 0,98 123,44 0,99 0,52 0,48 0,10 5,60
0,03 0,97 114,02 0,99 0,53 0,47 0,10 5,51
0,04 0,96 94,98 1,00 0,54 0,46 0,10 5,38
0,05 0,95 75,24 1,01 0,55 0,45 0,10 5,23
0,06 0,94 58,02 1,03 0,56 0,44 0,11 5,05
0,07 0,93 44,11 1,05 0,57 0,43 0,11 4,84
0,08 0,92 33,30 1,07 0,58 0,42 0,11 4,62
0,09 0,91 25,08 1,10 0,59 0,41 0,12 4,37
0,10 0,90 18,91 1,13 0,60 0,40 0,12 4,11
0,11 0,89 14,30 1,17 0,61 0,39 0,13 3,84
0,12 0,88 10,86 1,21 0,62 0,38 0,14 3,56
0,13 0,87 8,30 1,26 0,63 0,37 0,14 3,27
0,14 0,86 6,38 1,31 0,64 0,36 0,15 2,98
0,15 0,85 4,94 1,37 0,65 0,35 0,16 2,70
0,16 0,84 3,86 1,43 0,66 0,34 0,17 2,42
0,17 0,83 3,03 1,50 0,67 0,33 0,18 2,16
0,18 0,82 2,41 1,58 0,68 0,32 0,19 1,90
0,19 0,81 1,92 1,66 0,69 0,31 0,20 1,66
0,20 0,80 1,55 1,75 0,70 0,30 0,21 1,44
0,21 0,79 1,26 1,84 0,71 0,29 0,23 1,24
0,22 0,78 1,04 1,95 0,72 0,28 0,24 1,05
0,23 0,77 0,86 2,06 0,73 0,27 0,26 0,88
0,24 0,76 0,72 2,17 0,74 0,26 0,28 0,73
0,25 0,75 0,60 2,30 0,75 0,25 0,30 0,60
0,26 0,74 0,51 2,43 0,76 0,24 0,32 0,49
0,27 0,73 0,44 2,57 0,77 0,23 0,34 0,40
0,28 0,72 0,38 2,72 0,78 0,22 0,36 0,31
0,29 0,71 0,33 2,87 0,79 0,21 0,39 0,25
0,30 0,70 0,29 3,03 0,80 0,20 0,41 0,19
0,31 0,69 0,26 3,20 0,81 0,19 0,44 0,15
0,32 0,68 0,23 3,37 0,82 0,18 0,47 0,11
0,33 0,67 0,21 3,55 0,83 0,17 0,50 0,08
0,34 0,66 0,19 3,73 0,84 0,16 0,53 0,06
0,35 0,65 0,17 3,91 0,85 0,15 0,57 0,04
0,36 0,64 0,16 4,09 0,86 0,14 0,60 0,03
0,37 0,63 0,15 4,28 0,87 0,13 0,63 0,02
0,38 0,62 0,14 4,46 0,88 0,12 0,67 0,02
0,39 0,61 0,13 4,64 0,89 0,11 0,70 0,01
0,40 0,60 0,12 4,81 0,90 0,10 0,74 0,01
0,41 0,59 0,11 4,98 0,91 0,09 0,77 0,00
0,42 0,58 0,11 5,13 0,92 0,08 0,81 0,00
0,43 0,57 0,11 5,27 0,93 0,07 0,84 0,00
0,44 0,56 0,10 5,40 0,94 0,06 0,87 0,00
0,45 0,55 0,10 5,51 0,95 0,05 0,90 0,00
0,46 0,54 0,10 5,60 0,96 0,04 0,93 0,00
0,47 0,53 0,10 5,66 0,97 0,03 0,95 0,00
0,48 0,52 0,10 5,70 0,98 0,02 0,97 0,00
0,49 0,51 0,10 5,72 0,99 0,01 0,99 0,00
0,50 0,50 0,10 5,71

2.4 Вычисление термодинамических активностей компонентов бронзы БрБ2 при 25°С