Смекни!
smekni.com

Исследование распределения электропроводности в пересжатых детонационных волнах в конденсированных взрывчатых веществах (стр. 3 из 10)

Высоковольтный генератор импульсов успевает выдать за 10 мксек ток порядка 1000 А, удовлетворяя требования подрыва применяемого высоковольтного детонатора ЭДВ-1. Генератор постоянного тока реализован на разрядке конденсатора ёмкости С = 100 мкФ через высоковольтное сопротивление таким образом, что характерное время разрядки RC контура много больше времени исследуемого процесса, а измеряемые сопротивления значительно меньше высоковольтного сопротивления [1], так что измерения осуществляются при практически постоянном токе. Напряжение заряженного конденсатора составляло 700 вольт, а значение высоковольтного резистора варьировалось от 7 Ом до 70 Ом, в зависимости от эксперимента. Для проведения экспериментов использовались коаксиальные кабеля «Nokia» с волновым сопротивлением 56 Ом. Осциллограф давал ограничение на измеряемый сигнал напряжения, который не должен был превышать значение 50 вольт, и обеспечивал дискретизацию по времени в 2 наносекунды.

1.2 Постановка эксперимента

Для исследования проводимости продуктов детонации применялся электроконтактный метод измерений. Схема, применяемая для измерения сопротивления продуктов взрыва, идейно не отличалась от измерительной схемы [1], показанной на рис.1. Изменилась лишь конфигурация измерительных электродов – внешний цилиндрический электрод, коаксиально расположенный по отношению к внутреннему заглубленному стержню.

Исследуемый цилиндрический заряд взрывчатого вещества инициируется с торца детонатором ЭДВ-1 с применением генератора плоской волны. Характерная экспериментальная сборка показана на рис.4. По взрывчатому веществу распространяется детонационная волна. Размеры заряда выбраны таким образом, что до её прихода на электроды успевает установиться стационарная детонация. В момент, когда фронт детонации достигает вершин электродов, введённых в исследуемый заряд с торца, проводящие продукты детонации замыкают электроды. Сопротивление продуктов детонации шунтируется сопротивлением Rо, с которого снимается сигнал напряжения. Сопротивление шунта Rо подбиралось равным сопротивлению Rx продуктов детонации и составляло значения от 0.1 Ома до 5 Ом в зависимости от проводимого эксперимента. Постоянный ток, подаваемый на измерительную ячейку, обеспечивается разрядом конденсатора большой ёмкости через высоковольтное сопротивление RВ, значительно большее, чемRо и Rx. Максимальное значение напряжения конденсатора составляло 700 вольт, а значения сопротивления RВ варьировались от 7 Ом до 70 Ом в зависимости от проводимого эксперимента. По измеряемому напряжению без труда вычисляется сопротивление продуктов детонации:

Rx = (RоUx + L(dU/dt))/(Uo - Ux) - r, (2)

где Uo и Ux - соответственно напряжение на электродах до момента подхода детонационной волны к вершине электродов и после возникновения зоны высокой проводимости, Rо – сопротивление шунта, r – паразитное сопротивление измерительных проводов, L – индуктивность измерительной ячейки.

Сборка заряда взрывчатого вещества была различной в зависимости от цели проведения эксперимента. Так в экспериментах, где измерялась проводимость в условиях нормальной детонации, исследуемое взрывчатое вещество полностью заполняло оргстеклянную оболочку. Для измерения проводимости в условиях пересжатой детонации исследуемое взрывчатое вещество распологалось лишь внутри цилиндрического электрода, а остальной объем оргстеклянной оболочки заполняло более плотное взрывчатое вещество с большей скоростью детонации. Для данной работы таковым веществом был выбран гексопласт, ввиду удобства и простоты работы с ним.

В отдельных экспериментах проводилось рентгенографирование детонирующего заряда для исследования поведения электродов измерительной ячейки при прохождении детонационной волны. Рентгеновской съёмкой регистрировалось положение электродов цилиндрического заряда октогена диаметром 30 мм с коаксиальными электродами длиной 40 мм. Цилиндрическим электрод имел диаметр 10 мм, внутренний стержень имел диаметр 1 мм. Снимки фиксировали положение электродов и фронта детонационной волны в различные моменты времени. На рис.5 видно, что положение электродов не меняется в течение времени, необходимого для проведения измерений проводимости продуктов детонации.

1.3 Измерение плотности и скорости детонации для использованных взрывчатых веществ

Результаты экспериментов и их повторяемость зависят от тщательности приготовления зарядов, поэтому процесс изготовления зарядов для каждого эксперимента обязан быть идентичным. Для получения одинаковых зарядов насыпных взрывчатых веществ применялся специальный метод. Объём, предназначенный для заполнения его взрывчатым веществом, находился под действием внешних механических колебаний. Колебания создавались источником вибрации – шэйкером. Вибрирующий объём медленно заполнялся взрывчатым веществом.

Аналогичная проблема идентичности возникает при изготовлении литых зарядов. Оказалось, что результаты экспериментов, выполненных с использованием зарядов литого тротила, приготовленных обычным способом, сильно различаются. Причина расхождений результатов содержится именно в способе заливки заряда. Приготовление литых зарядов методом медленной послойной заливки позволило добиться повторяемости экспериментальных данных.

В экспериментах с пересжатой детонацией использовался гексопласт, пластичное плотное взрывчатое вещество, и поэтому проблем с приготовлением зарядов не возникало.

Оценка идентичности зарядов проводилась по результатам измеренной плотности и скорости детонации получаемого заряда взрывчатого вещества.

Детонационные скорости определялись отношением длины измерительных электродов к времени прохождения детонационной волны по электродам. Для определения момента прохождения измерительных электродов детонационной волной использовался стандартный контактный датчик. Полученные значения скоростей детонации приведены в таблице 1.

Плотность взрывчатого вещества в приготовленном заряде определялась из отношения массы взрывчатого к объёму, занимаемому взрывчатым веществом. Масса измерялась на весах. Полученные значения плотностей приведены в таблице 1.

Значения полученных плотностей взрывчатых веществ и скоростей детонации в пределах погрешности измерений совпадают с данными по плотностям и скоростям детонации приведёнными в [3].

1.4Индуктивность измерительной ячейки

Индуктивность измерительной ячейки влияет на время падения тока в шунтирующем сопротивлении Ro при подключении быстро меняющегося сопротивления продуктов детонации. Поэтому в экспериментах следует применять измерительную ячейку с наименее возможным значением индуктивности. Для этого, в итоговой измерительной ячейке сопротивление шунта Roзакреплялось непосредственно на самом заряде с соблюдением наименее возможных размеров измерительного контура. Таким образом, для получения результата сопротивлением Roпопросту жертвовали. Индуктивность коаксиальной измерительной ячейки складывается из индуктивности цилиндрической системы электродов и индуктивности присоединяемого контура, содержащего шунтирующее сопротивление. Конструкция измерительной ячейки изображена на рис.4.

Из-за невозможности измерения индуктивности контура шунтирующее сопротивление – измерительная ячейка ввиду её малости величина её определялась следующим образом. Строилась зависимость индуктивности измерительной ячейки от длины контура. Изначально была приготовлена измерительная ячейка, показанная на рис.7, с большой длиной контура. С постепенным уменьшением длины контура, приборно измерялась индуктивность. Полученная кривая хорошо ложится на прямую с наклоном dL/dx = 11 нГн/см, что показано на рис.7. Учитывая, что индуктивность цилиндрической системы оценена как 15 нГн, а индуктивность применяемого в экспериментах контура длиной 1,5 см приdL/dx = 11 нГн/см составляет 16,5 нГн, индуктивностью измерительной ячейки следует считать L = 32 нГн. При этом следует помнить о погрешности измерений индуктивности и сборки измерительной ячейки, которая, в свою очередь, дает ошибку в 30%. Поэтому индуктивность ячейки составляет L = 30 ± 10 нГн. Такая величина индуктивности заметно сказывалась в экспериментах с малыми шунтирующими сопротивлениями порядка Rо = 0.1 Ом.

Индуктивность цилиндрической системы электродов в пренебрежении краевым эффектом оценивалась из выражения:

, (3)

где b и а - диаметры наружного и внутреннего электродов, l – длина электродов.


1.5Восстановление электропроводности продуктов детонации

Поведение электрических зарядов удовлетворяет уравнению непрерывности.

Время τ установления стационарного распределения электрического поля определяется электропроводностью продуктов детонации и оказывается равным 10-11-10-12с, что гораздо меньше всех детонационных времён.

Малость величины τ позволяет упростить уравнение непрерывности.